Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы исследования материалов

    Содержание и методы физической химии. Физическая химия — наука, возникшая на грани двух важнейших естественных наук — физики и химии. Она представляет собой самостоятельную дисциплину, обладающую своими специфическими методами исследования, которые широко используются в неорганической, органической, аналитической и коллоидной химии и других смежных дисциплинах. Физическая химия решает наиболее общие вопросы химии, связанные с изучением взаимодействия различных форм движения материи, устанавливает взаимосвязь физических и химических явлений. Основное внимание уделяется исследованию законов протекания химических процессов во времени и законов химического равновесия. Для этого привлекаются данные о строении и свойствах атомов и молекул. [c.5]


    Электрохимия. Рассматривает важнейшие процессы взаимного превращения электрической и химической форм движения материи, а также свойства и строение растворов электролитов, процессы электролиза, работу гальванических элементов, электрохимическую коррозию металлов, электросинтез веществ и др. В настоящее время электрохимические методы исследования и анализа приобретают все большее значение в практике заводских, агрохимических, почвенных и других лабораторий. [c.6]

    В настоящее время изданы обобщающие монографии, касающиеся физико-химической механики контактных взаимодействий металлов, дисперсий глин и глинистых минералов. Однако в области вяжущих веществ, в частном случае тампонажных растворов, такие обобщения практически отсутствуют. В этом направлении накоплен большой экспериментальный материал, который изложен в разрозненных статьях, в специальных журналах, информационных изданиях. Уже сейчас высказан ряд различных гипотез и предположений о механизме формирования дисперсных структур в твердеющих системах, которые требуют однозначной трактовки с позиций физико-химической механики с использованием данных об этих процессах, получаемых с помощью различных физических, физико-химических и других методов исследований. Поэтому, наряду с изданием монографии С. П. Ничипоренко с соавторами Физико-химическая механика дисперсных минералов , немаловажное значение имеет издание настоящей книги. Исходя из имеющихся экспериментальных данных в книге сформулированы некоторые принципы и закономерности формирования дисперсных структур на основе вяжущих веществ. Конечная задача физико-химической механики заключается в получении материалов с требуемыми свойствами и дисперсной структурой, с высокими прочностью, термостойкостью и долговечностью в реальных условиях их работь и в научном обосновании оптимизации технологических процессов получения тампонажных растворов и регулировании их эксплуатационных показателей. Для этих целей широко используется обнаруженный авторами в соответствии с кривой кинетики структурообразования цементных дисперсий способ их механической активации, который получил вполне определенную трактовку. В отношении цементирования нефтяных и газовых скважин разработаны глиноцементные композиции с применением различного рода поверхностно-активных веществ, влияющих на процессы возникновения единичных контактов и их прочность в пространственно-коагуляционной, коагуляционно-кристаллизационной и конденсационно-кристаллизационной структурах. [c.3]


    Испытания такого рода показывают для каждого материала уровень критической скорости, которая характеризует равновесие между сохранением и разрушением защитных пленок. Эти критические скорости относятся только к тем условиям, в которых они были измерены. Поскольку различные части образца вращаются с различной линейной скоростью, критическая скорость может значительно отличаться по величине от скорости, полученной при других методах исследования, например при перемещении самой коррозионной среды у неподвижных образцов. [c.161]

    Чтобы показать, как трудно определить, что такое живой организм,, рассмотрим простейшие виды материи, которая считается живой. Примером могут служить вирусы растений, например вирус кустистой карликовости томата, электронная микрофотография которого приведена на рис. 2.14. Эти вирусы в соответствующих условиях обладают способностью самовоспроизведения. Отдельная частица (индивидуальный организм) вируса кустистой карликовости томата, оказавшись на листе растения, может вызвать превращение значительной части вещества, составляющего клетки данного листа, в точно такие же, как и она сама, вирусные частицы. Эта способность к самовоспроизведению представляется, однако, единственной характерной чертой живого организма, которой обладает данный вирус. После того как вирусные частицы образовались, они не растут, не нуждаются в питательной среде и уже не участвуют в процессах обмена веществ. Насколько можно судить на основании данных, полученных при помощи электронной микроскопии и других методов исследования, отдельные частицы данного вируса совершенно идентичны между собой со временем они не изменяются — явление старения для них не наблюдается. Вирусные частицы не спо собны передвигаться и, по-видимому, не обладают свойством реагировать на внешние раздражители так, как это делают более сложные живые организмы. Однако они обладают свойством самовоспроизведения. [c.382]

    Сополимеры бутадиена с акрилонитрилом при облучении сшиваются труднее, чем сополимеры бутадиена со стиролом [171]. Введение наполнителей в бутадиеннитрильные каучуки увеличивает предельную дозу радиации, до которой материал еще сохраняет удовлетворительные физические свойства, однако облучение высокими дозами вызывает снижение разрывного удлинения, усадку материала и повышение хрупкости [186, 187]. При облучении сополимеров бутадиена с акрилонитрилом, пластифицированного триэтилфосфатом, в тепловыделяющем элементе реактора было обнаружено избирательное разрушение пластификатора [134]. Механизм сшивания сополимеров бутадиена с акрилонитрилом под действием радиации не ясен. Количество образующихся поперечных связей в сополимерах бутадиена, содержащих 20—50% акрилонитрила, по данным об изменении степени набухания [188] прямо пропорционально поглощению у-лучей. В другой работе при облучении сополимеров бутадиена с акрилонитрилом в аналогичных условиях, но другими методами исследования была показана ингибирующая роль звеньев акрилонитрила в процессах радиолиза при дозах до 3-10 — 5-10 рентген, при более высоких дозах ингибирующий эффект исчезает и последующее сшивание протекает более интенсивно [175]. Механизм этого явления непонятен. [c.183]

    Для окончательного решения вопроса о конформации молекул ДНК необходимо дальнейшее накопление экспериментального материала, получаемого как методом светорассеяния, так и другими методами исследования структуры макромолекул. [c.314]

    Для познания общих закономерностей химических явлений физическая химия широко пользуется разработанными физикой теоретическими и экспериментальными методами исследования материи. Без такого использования физических методов успехи в развитии физической химии были бы невозможны. С другой стороны, развитие современной физики тесно связано с изучением химических проблем. [c.8]

    Резонансный метод исследования и контроля реакторных материалов и изделий используется достаточно эффективно, прежде всего при отработке технологии новых материалов. Этим методом изучали свойства металлических и керамических материалов в широком интервале изменения температуры (от 4,2 К до 2500...3000 К), концентрации, при механических, химических, радиационных воздействиях [22]. Зависимость модуля упругости от плотности и зависимость резонансных частот от размеров изделия позволили использовать этот метод для изучения спекания керамических материалов. Основу указанных применений составляла связь характеристик упругости и плотности с другими физическими свойствами материала. Например, изучение изменения модуля упругости двуокиси урана при облучении в активной зоне ядерного реактора позволило сделать заключение о механизме радиационного повреждения этого материала на начальном этапе его работы в реакторе. О возможности использования резонансного акустического метода для контроля топливных таблеток ядерных реакторов уже упоминалось. [c.154]


    Всякий химический анализ является цепью операций ошибка может возникнуть на разных этапах при отборе средней пробы материала, при взятии навески (вследствие, например, гигроскопичности материала), при растворении пробы (разбрызгивание или образование аэрозолей), при многочисленных химических процессах, (вследствие, например, небольших отклонений от оптимальных физико-химических условий, попадания примесей из реактивов, из посуды, из воздуха). Многие ошибки могут повторяться систематически при повторении анализов. Тогда результаты будут хорошо воспроизводимы, но тем не менее неправильны. Так, при повторных титрованиях раствора буры соляной кислотой с индикатором фенолфталеином получаются цифры с хорошей воспроизводимостью. Средний результат будет действительно наиболее вероятным значением объема соляной кислоты, затраченной на титрование буры в данных условиях. Однако теория титрования показывает, что изменение окраски фенолфталеина не совпадает с точкой эквивалентности при взаимодействии буры с соляной кислотой. Контроль с помощью других методов исследования может подтвердить эти данные. Поэтому расчет содержания буры на основании среднего арифметического даст неправильные результаты в лучшем случае отклонение от истинного составляет около 10%, хотя воспроизводимость равна 1%. [c.28]

    Построив различные математические модели для экспериментальных кинетических кривых, необходимо выбрать те из них, которые адекватно описывают данные эксперимента. Проанализировав результаты математической обработки экспериментального материала с учетом данных других методов исследования (в частности, рентгенофазового, термогравиметрического, магнитного анализа), можно сделать вывод о механизме твердофазной реакции, т. е. предположить, какая стадия является лимитирующей при заданной температуре. [c.279]

    Следует еще раз подчеркнуть тесную взаимосвязь различных, отделов физической химии. При исследовании любого явления приходится использовать арсенал представлений, теорий и методов исследования многих разделов физической химии (а нередко и других наук). Лишь при начальном знакомстве с физической химией можно в учебных целях распределить материал по указанным разделам. [c.20]

    Накопленный за последние годы опыт создания и эксплуатации промышленных установок, а также обширный экспериментальный материал по исследованию обратного осмоса и ультрафильтрации позволяют автору критически рассмотреть достоинства и недостатки этих методов, сопоставить их с другими методами разделения, а также описать физико-химическую сущность и основные закономерности обратного осмоса и ультрафильтрации, что позволило разработать принципы расчета мембранных процессов и аппаратов. [c.9]

    Для исследования характера движения жидкости в трехмерном пространстве наряду с другими методами используют способ визуального наблюдения за перемещением введенного в перемешиваемую жидкость ярко окрашенного шарика диаметром 5 мм плотность материала шарика равна плотности перемешиваемой среды. [c.278]

    Таким образом, наметились новые пути исследований, в основе которых лежало изучение свойств сплавов в зависимости от изменения их состава, что стало содержанием нового метода исследования— физико-химического анализа. В своих работах Курнаков проводит идею о необходимости использования Периодической системы и Периодического закона Д. И. Менделеева для установления основных закономерностей взаимодействия элементов друг с другом. По мере накопления материала в области изучения металлических сплавов развилась новая область общей и неорганической химии — химия металлических сплавов. Эта область тесней-щим образом связана с физической химией, физикой и химией твердого тела, кристаллохимией, металловедением. [c.361]

    Трудности изучения физических характеристик обмена импульсом при течении в трубах исключительно на базе экспериментального. материала обусловливают в качестве альтернативы необходимость обращения к теоретическим методам исследования. Первые теоретические работы были немногочисленны [21, 74, 92] и содержали материал по узкому кругу вопросов. Более поздние исследования [88] выглядят намного перспективнее. Поэтому теперь достаточно подробно будут рассмотрены два различных аналитических подхода. Один из них [88] применим к течению взвесей с крупными частицами. Совершенно другой подход [73] (разд. 6.8.2) используется при исследовании систем из мелких частиц. [c.210]

    Исследования акустоупругого эффекта проводились по классической методике, принятой при изучении напряженного состояния другими методами, в первую очередь - в фотоупругости. Прежде всего, рассматривались случаи однородного сжатия и растяжения материала, в некоторых случаях условия эксперимента диктовались прикладной проблемой - необходимостью контроля механических напряжений в деталях резьбовых соединений. Были разработаны метод мультипликативного совмещения эхо-импульсов для измерения времени распространения ультразвука [25], способы измерения механических напряжений в изделии [24], контроля [c.101]

    Поэтому не исключено, что для понимания химических основ функционирования углеводсодержащих биополимеров в живых системах важны скорее несколько огрубленные, усредненные сведения о структуре, т. е. именно те, которые получаются при использовании современных методов исследования этих объектов. С другой стороны, для изучения микрогетерогенности как явления, понимания его биологического смысла и биосинтетических причин как раз важным кажется именно прецизионное, особо точное определение строения отдельных компонентов тех сложных смесей, какими являются такие биополимеры. Так что в столь сложном вопросе, как стратегия структурных исследований полисахаридов, оба, казалось бы взаимоисключающих, ответа на вопрос о целесообразной точности и глубине проникновения в материал оказываются правильными. [c.110]

    ГЕОХИМИЯ (от греч. ge-Земля и химия наука о распространенности и миграции хим. элементов в геосферах. Основы Г. разработаны в нач. 20 в. В. И. Вернадским, А. Е. Ферсманом, В. М. Гольдшмидтом и Ф. У. Кларком. Предмет Г. как отрасли знаний сформулировал В. И. Вернадский, назвав ее историей атомов Земли. Совр. Г.-комплекс наук, объединяемых единой методологией и конкретными методами исследований. С одной стороны, Г. широко использует достижения физики и химии, новейшие методы анализа и представления о строении в-ва, с другой-огромный материал, накопленный геол. науками, в частности минералогией, петрографией, наукой о рудных месторождениях. [c.521]

    Авторы стремились составить для работников, занимающихся автоматическим регулированием, полный и теоретически обоснованный обзор аналитических методов исследования динамики регулируемых систем в различных областях техники. Содержание книги не затрагивает электротехнических систем, теория которых уже достаточно разработана и рассмотрена в других специальных монографиях. Из-за ограниченного объема книги, естественно, нельзя было подробно останавливаться на всевозможных типах и вариантах систем регулирования. Прежде всего рассматривались типичные примеры, иллюстрирующие методы, которые используются при аналитическом исследовании динамических характеристик промышленных объектов. Авторы подбирали и обрабатывали материал таким образом, чтобы читатель мог найти полный обзор по проблеме, освоил необходимую методику и мог самостоятельно решать и другие аналогичные задачи. Из этих соображений в нескольких случаях приведены разные методы решения одной и той же задачи. Книга содержит также ряд оригинальных работ авторов, и на выбор материала, несомненно, повлияло направление их исследований. В отдельных главах и разделах книги материал [c.22]

    В настоящей монографии сделана попытка, на основании литературных данных и собственных исследований авторов, систематизировать накопленный фактический материал по аналитической химии рения. Кроме того, в первых двух главах, посвященных общим вопросам, большое внимание уделено характеристике основных соединений рения в различных валентных состояниях и состояния рения в растворах, что особенно важно при выборе методов анализа, выделения и определения рения после разложения содержащих его материалов. В книге изложены результаты проводившихся в ГЕОХИ АН СССР исследований по изучению химико-аналитических свойств разновалентного рения и комплексообразования рения(1У), (V) и (VI) с различными лигандами, по исследованию состояния рения в средах, имеющих важное технологическое и аналитическое значение, с привлечением математических методов обработки экспериментальных данных, а также по разработке экстракционных, хроматографических, электрохимических, спектрофотометрических, полярографических, активационного и других методов выделения и опреде-ления рения, которые в течение ряда лет выполнялись под руководством Дмитрия Ивановича Рябчикова. [c.5]

    Действительно, объем информации по случаям реализации основных опасностей (авариям), которым располагают специалисты в области промышленной безопасности, исключительно велик. По нашей оценке, для его опубликования потребовались бы сотни и даже тысячи томов. Совершенно очевидно, что практически работать с таким количеством материала невозможно. Однако современные программные и аппаратные возможности вычислительной техники позволяют воспользоваться принципиально другой технологией хранения и переработки накопленного объема сведений по промышленным авариям - компьютерными базами данных. Создание и эксплуатация компьютерной базы данных по авариям промышленных предприятий и возникающих при этом чрезвычайных ситуаций превратили бы статистический метод исследования (наряду с экспериментальным и расчетно-теоретическим методом) в эффективно работающий инструмент решения основных проблем промышленной безопасности изучения аварий, создания систем безопасности и разработки принципиально безопасных технологий, научного обеспечения действий по спасению и защите населения при техносферных катастрофах, а также ликвидации последствий крупных аварий. - Прим. ред. [c.30]

    Изложенный материал может понадобиться читателям с разными интересами В связи с этим возможна его проработка в различном плане. Можно подробно разобрать все выкладки и доказательства и овладеть как теоретическими методами исследования, так и приложениями конкретных результатов. В другом варианте некоторые доказательства могут быть лишь просмотрены и опущены без ущерба для понимания происхождения результатов и возможностей их непосредственного использования- [c.6]

    Гидролиз белков, по существу, сводится к гидролизу полипептид-ных связей, К этому же сводится и переваривание белков. При пищеварении белковые молекулы гидр<злизуются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и кл(тки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть - на синтез гормонов, ферментов и других биологически важных веществ, а остальные лужат как энергетический материал. Развитие новых экспериментальных методов исследования в органической химии обусловило успехи в изучении структуры белка, В настоящее время раапичают первичную, вторичную и третичную структуры белковой молекулы. [c.420]

    Указанная характеристика чувствительности достаточна для оценки таких методов, когда конечный сигнал получается непосредственно при исследовании материала. Это относится, например, к обычным методам спектрального анализа, некоторым кондуктометрическим методам, спектрометрии растворов красителей и т. п. Если же анализируемый материал предварительно подвергается обработке, отделению других компонентов и т. п., тогда приведенной характеристики недостаточно. [c.30]

    Строение атомов, имеющих на своих энергетических уровнях несколько электронов, весьма сложно и его нельзя точно математически рассчитать,как это осуществимо для атома водорода и водородообразных структур типа Не" и Однако можно с достаточной степенью точности оценить строение атомов элементов, пользуясь в первую очередь периодической системой элементов Д. И. Менделеева, законом Мозли, а также используя теорию строения атома водорода. Критерием правильности наших суждений является обширный материал спектральных исследований, а также других методов исследования внутреннего строения атомов и молекул. [c.44]

    Для диагностики микозов применяются микроскопические (в том числе гистологические), микологические (культуральные), аллергические, серологические, экспериментальные, молекулярно-биологические и другие методы исследования. Ввиду морфологического многообразия грибов, а также их медленного роста ведущее значение в диагностике микозов имеют морфологические методы обнаружения и идентификации возбудителя. В зависимости от клинических проявлений болезни исследуемым материалом служат пораженные волосы, чешуйки кожи, кусочки ногтей, кожные и ногтевые скарификаты, гной, мокрота, пунктаты лимфатических узлов, костного мозга, внутренних органов, кровь, спинномозговая жидкость, желудочный сок, желчь, испражнения, кусочки тканей, полученные при биопсии или аутопсии, и др. Материал берут по возможности из очага инфекции при соблюдении правил асептики эпиляционным пинцетом, скальпелем, препаровальной иглой, лезвием бритвы, ножницами, ложечкой Фолькмана, пастеровской пипеткой и др. Тампонами материал стараются не брать. Чтобы лучше рассмотреть пораженный участок, можно пользоваться лупой, у больных микроспорией — люминесцентной лампой, в лучах которой пораженные волосы имеют изумрудно-зеленое свечение. При подозрении на поражение дерматофитами ногти обрабатывают 70%-м этанолом для инактивации и удаления наружной (сопутствующей) микрофлоры, состригают и в сухом контейнере доставляют в лабораторию. Патологический материал следует брать в количестве, достаточном для [c.311]

    Эта новая техника сулит большие преимущества по сравнению с описанными выше методами. Она позволяет производить иссле-цования без порчи материала, а с помощью метода лаковых отпечатков исследовать пороки в изделиях или деталях машин, возникшие в процессе их эюоплуатации и особенно в местах, где другие методы исследования неприменимы. [c.252]

    Среди различных методов исследования преимущественное внимание уделено рентгенографическому методу, с помощью которого можно определить размеры упорядоченных участков структуры (кристаллитов) и их текстуру. Но задача усложняется при исследовании труднографи-тирующихся материалов, имеющих так называемую турбостратную структуру [2]. Типичным примером таких материалов являются углеродные волокна. Даже при высоких температурах термообработки они полностью не приобретают структуру графита, хотя с ростом температуры обработки их структура совершенствуется. Поэтому желательно применение других методов исследования, чувствительных не только к геометрической структуре материала. Сказанное особенно справедливо для температурной области ниже 2100 К, когда протекание процесса графитации заторможено. [c.79]

    Сравнивая методику, примененную Seibel ем, с другими методами исследования природных газов для характеристики их гелиеносности, приходится прежде всего отметить, что, задавшись чисто практической целью определить из всех благородных газов только содержание гелия в газе, американцы этим сильно ограничили значение накопленного ими фактического материала. Для генетических заключений, а также для выяснения более детальных условий нахождения в природе месторождений гелиеносных природных газов, крайне существенно иметь данные [c.200]

    КЛАССИФИКАЦИЯ И ОБЩ.АЯ Х.АРАКТЕРИСТИК.А МЕТОЛОЕ ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ Коррозионная стойкость не является абсолютной характеристикой только металла или другого конструкционного материала, а в равной степени зависит от коррозионной среды. Один и тот же материал, обладая высокой коррозионной и химической стойкостью в одних средах, может оказаться совершенно нэпригодным в других. Большое разнообразие видов коррозии, как по механизму, так и по условиям протекания и характеру коррозионного разрушения, требует использования различных методов исследования коррозионной стойкости металлов и сплавов. Главным здесь является по возможности более полная имитация условий их эксплуатации. [c.5]

    В ряде исследований [76, 77] использовался другой метод — анализ Найта распределения напряжения вдоль трещины серебра. Однако совсем недавно Верхойлпен-Хейманс [157] указал, что большей частью неизвестное реологическое поведение материала трещины серебра и области при ее вершине оказывает такое сильное влияние на расчетное поле напряжений, что в настоящее время результаты этого метода нельзя оценить однозначно. [c.380]

    Моделирование композиционного материала эквивалентной однородной средой недостаточно для исследования локальных пластических деформаций или разрушения, дисперсии волн и решения других задач, определяемых как раз неоднородностью свойств материала по координатам. Естественно, что точное решение подобных задач для неоднородного хматериала возможно только в редких случаях, поэтому были развиты приближенные методы исследования. Из этих методов наибольшее распространение и обоснование получили методы малого параметра и осреднения, основные идеи которых и будут рассмотрены в данном параграфе. [c.123]

    Казалось бы естественным изучение фазового состава основывать главным образом на исследовании микроструктуры смеси полимеров. Прямое исследование микроструктуры в световом (фазово-контрастном) или электронном микроскопе при современных методах подготовки образцов дает интересную информацию о структуре смеси [2, 3, 77, 78, 80, 84, 85, 88—90, 155 165 и др.]. Этот метод дает также информацию, которую вообще нельзя получить другими методами. Но метод имеет и свои недостатки, самый основной из которых обусловлен высокомолекулярной природой полимеров. Если в смеси полимеров размер частиц дисперсной фазы составляет, например, 100— 150 А, то это могут быть либо действительно частицы второй фазы, либо такие микронеоднородности, которые свойствами фазы не обладают. Действительно, одна макромолекула, свернутая на себя, имеет размер указанного порядка. Если полимеры совместимы и произошло диспергирование до отдельных макромолекул, то под микроскопом такие макромолекулы могут выглядеть как частицы второй фазы, даже если произошло самопроизвольное растворение одного полимера в другом. В истинных растворах низкомолекулярных веществ обычно происходит ассоциация однородных молекул. Если макромолекулы образуют ассоциат еще до возникновения новой фазы, то он может иметь размеры обычных коллоидных-частиц. Поэтому наличие микронеоднородности, видимой в микроскоп, не есть еще однозначное подтверждение наличия двухфазной структуры система двухфазна тогда, когда свойства частички идентичны свойствам большого объема материала дисперсной фазы. В сущности такой подход следует из определения Гиббса. Так, в книге Киреева ([166], стр. 232) сказано Фаза — совокупность всех гомогенных частей системы, одинаковых по составу и по всем химическим и физическим свойствам (не зависящим от количества вещества) и отграниченных от других частей системы некоторой поверхностью (поверхностью раздела) . [c.35]

    В зависимости от особенностей постановки учебного процесса в различных вузах страны некоторые смежные разделы (адсорбция газов и паров, хроматография, электрокапиллярные явления, физическая химия высокомолекулярных соединений и др.) могут включаться в другие учебные курсы. По таким разделам в учебнике излагается лишь тот материал, который является коллоидно-химическим по существу и необходим по логике построения курса. Более подробное изложение этих вопросов, а также современных коллоидно-химических методов исследования читатели могут найти в руководствах по практикуму, пособиях и монографиях, приведенных в конце книги. В связи с разветвленным, интердисциплинарным характером коллоидно-химической науки в книге многократно используются ссылки на предыдущие и последующие главы, что помогает восприятию взаимосвязи разделов учебника. [c.3]

    В предтагаемом учебном пособии изложены современные представления о структуре полимеров, особенностях их свойств, способах регулирования структуры. В отличие от других пособий по химии и физике полимеров описаны методы исследования структуры полимеров, большое внимание уделено их теплофизическим и электрическим свойствам Рассмотрены способы получения полимеров, а также направленной физической и химической модификации их с целью создания материалов с требуемыми свойствами. В конце каждой главы даны контрольные вопросы, которые помогут студентам в усвоении пройденного материала. [c.5]

    Изложению фактического материала предшествует краткая. характеристика методики исследования, позволяющая судить о точности экспериментальных данных. В большинстве работ в качестве основных методов экспериментального исследования были использованы термографический, визуально-политер-мический и рентгенофазовый. Однако во многих случаях для построения диаграмм состояния в широком диапазоне температур и концентраций применяли также тензо Мет рический, кристаллооптический, ИК-сиектроскопический, эманационный и другие методы физико-химического анализа. [c.14]

    Точность тепловых исследований зависит главным образом от методики и техники эксперимента. Методика определяется теорией. метода, а техника — воплош ением теории в практику. В теории метода исследования обычно рассматривается одномерная задача, не т[итывается зависимость теилофизических констант материала модели от температуры, принимаются и другие допущения. При практической же реализации методики не учитывается [c.44]


Смотреть страницы где упоминается термин Другие методы исследования материалов: [c.44]    [c.25]    [c.45]    [c.33]    [c.246]    [c.164]    [c.178]    [c.13]    [c.154]    [c.66]   
Смотреть главы в:

Методы физико-химического анализа вяжущих веществ -> Другие методы исследования материалов




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Материалы и методы



© 2025 chem21.info Реклама на сайте