Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент через газовую фазу

    Транспорт компонента разделяемой газовой смеси через пористую основу мембраны осуществляется одновременно несколькими механизмами переноса, в зависимости от структуры матрицы, свойств веществ и термодинамических параметров процесса. В общем случае движение компонентов смеси может вызываться конвективно-фильтрационным переносом, различного вида скольжениями вдоль поверхности пор, объемной диффузией, баро- и термодиффузией, кнудсеновской диффузией (эффузией), поверхностной диффузией, пленочным течением вследствии градиента расклинивающего давления, капиллярным переносом конденсированной фазы в анизотропных структурах. Вещество в порах скелета мембраны, как показано ранее, может находиться в виде объемной газовой фазы, капиллярной жидкости и адсорбированной пленки. Для каждого из этих состояний возможно несколько механизмов переноса, взаимосвязанных между собой. Не все виды переноса равнозначны по своему вкладу в результирующий поток веществу, поэтому при вычислении коэффициента проницаемости необходимо определить условия, при которых те или иные формы движения вещества являются доминирующими [З, 9, 10, 14—16]. [c.54]


    Для процессов массообмена, протекающих в газовой фазе (например, абсорбция), движущую силу можно выразить также через разность парциальных давлений компонента в газе р и при равновесии р, т. е. А = /з — р. В зависимости от способа выражения движущей силы процесса будут изменяться размерность Ki, и уравнение для его расчета. Иногда используют объемный коэффициент массопередачи, относя количество переданной массы к единице объема аппарата или контактной зоны. В этом случае уравнение массопередачи записывают в виде [c.223]

    Заметим, что введенные посторонние молекулы являются как бы переносчиками молекул воды через газовую фазу, и их концентрация остается постоянной. Вещества, молекулы которых увеличивают скорость данного процесса, не влияя на величину его термодинамической работы, называются катализаторами. Роль катализатора сводится, таким образом, к изменению механизма реакции, т. е. либо к уменьшению энергии активации, либо к увеличению коэффициента пропорциональности К- [c.48]

    Для математического описания реактора с псевдоожиженным слоем катализатора часто используют двухфазную модель , согласно которой псевдоожиженный слой можно представить в виде двух фаз плотной , состоящей из однородного слоя взвешенных частиц катализатора, через который движется реакционная смесь, и дискретной , т. е. газовых пузырей, проходящих через плотную фазу. Дискретная фаза не содержит частиц катализатора и в ней реакции не протекают. Между дискретной и плотной фазами происходит массообмен. Перемешивание реакционной смеси в плотной фазе описывается эффективным коэффициентом диффузии. Температуру псевдоожиженного слоя можно считать постоянной. Мы ограничимся рассмотрением реакторов с псевдоожиженным слоем, для которых характерны условия  [c.46]

    Провальные тарелки широко используются в химической и родственных ей отраслях промышленности для различных массообменных процессов. И. Н. Кузьминых [40] установил, что коэффициент массопередачи через газовую фазу, т. е. в случае хорошо растворимых газов, пропорционален скорости газа в аппарате в степени 0,8—0,85. Коэффициент массопередачи для процессов, лимитируемых диффузионным сопротивлением со стороны жидкости, при повышении скорости газа сначала растет, при скоростях газа около [c.132]


    Более сложны случаи, когда атг > Отж + Ожг. Для анализа влияния адсорбции на смачивание в таких системах удобно воспользоваться коэффициентом растекания 5 = атг — Отж — Ожг [29]. При Отг > (Ттж + Ожг начальный коэффициент растекания 5н > О, поэтому жидкость будет растекаться по твердой поверхности и смоченная площадь будет увеличиваться. Одновременно с растеканием происходит адсорбция молекул жидкости на поверхности твердого тела впереди периметра смачивания. Перенос молекул жидкости может осуществляться различными путями — через газовую фазу и по поверхности твердого тела. Адсорбция приводит к снижению поверхностного натяжения твердого тела на границе с газом до величины а , соответственно, коэффициент растекания 5 уменьшается. При этом в зависимости от особенностей адсорбции могут иметь место три случая [30]  [c.33]

    Транспорт летучих соединений из глубины почвы к поверхности зависит от таких физико-химических параметров, как летучесть, растворимость в воде (определяется константой Генри), распределение или сорбция на частицах почвы из воды (определяется коэффициентом распределения почва/вода). В глубине почвы влияние диффузии через газовую фазу в общий миграционный поток вещества незначительно. Испарение воды создает условия для восходящего движения загрязнений к поверхности вследствие конвективного переноса, поэтому с поверхности влажных почв органические ксенобиотики испаряются эффективнее, чем с поверхности сухих. [c.254]

    Ка — коэффициент массопередачи, выраженный через концентрации в газовой фазе, моль см -сек атм) [c.13]

    Ранее было получено уравнение (1.18) для коэффициента ускорения массопереноса, при этом предполагалось, что результирующий поток при сопряжении I и независимый поток /, сравниваются при одинаковой движущей силе X, равной разности химических потенциалов газа в напорном и дренажном каналах. Если использовать допущение о локальном равновесии фаз и выразить движущую силу поверхностной диффузии через состояние газовой фазы, то очевидно = Тогда коэффициент ускорения окажется функцией степени сопряжения у. и феноменологической стехиометрии 2 (см. уравнения (1.11))  [c.68]

    Чтобы вся внутренняя поверхность катализатора была равнодоступна реагирующим молекулам, надо уменьшать размеры таблеток, но при этом быстро возрастает сопротивление слоя катализатора движению газовой смеси и возрастают энергетические затраты на продувку большой массы газа через слой катализатора. Для определения оптимальных размеров таблеток катализатора и основных параметров процессов в химическом реакторе надо знать зависимость скорости реакции от размеров таблеток, их пористости, активности катализатора, скорости движения газовой смеси и ряда других факторов. Особенно велико влияние размеров таблеток катализатора на скорость гетерогенно-каталитических процессов в жидкой фазе, так как коэффициенты диффузии в этой фазе примерно на четыре порядка меньше коэффициентов диффузии в газовой фазе. Если на катализаторе протекают параллельные или последовательные реакции, то размеры таблеток могут повлиять на селективность процесса. [c.648]

    Критериальные уравнения для расчета коэффициентов массопередачи (через критерии Nu), как правило, включают в качестве определяющего критерий Рг = (v/i)) с показателем степени около 0,33 для газовой фазы и около 0,5 для жидкой. [c.130]

    Е. Сопротивление на границе раздела (молекулярнокинетическое). Молекулярно-кинетические эффекты при конденсации могут привести к дополнительному небольшому падению температуры в газовой фазе. Это падение температуры происходит в пределах нескольких средних длин свободного пробега молекул поверхности жидкости и может быть выражено через эффективный коэффициент теплоотдачи на границе раздела следующим образом [58]  [c.349]

    А. Теплоотдача к плотноупакованным слоям. Коэффициент теплоотдачи стенки. Молекулярная теплопроводность газа между частицами плотноупакованного слоя сильно влияет на процессы теплообмена в слое и на перенос теплоты от стенок к слою. Так, значение эффективного коэффициента теплопроводности слоя на порядок величины меньше, чем теплопроводность самих твердых частиц, особенно когда слой находится при пониженном давлении. Когда теплота переносится от стенок к слою из частиц, оказывается, что сопротивление стенки сильно зависит от свойств переноса газовой фазы. Кроме того, происходит перенос теплоты излучением и теплопроводностью через площадь контакта между гранулами. [c.440]


    Пример. Определить коэффициент диффузии метана в газовой фазе через водяной пар при температуре 352,3 К и давлении, равном 0,1 МПа. Молярная масса воды 18,016 г/моль, метана — 16,043 г/моль. Используя данные табл. 2, определяем молекулярные диффузионные объемы для воды и метана  [c.180]

    Коэффициент массопередачи (абсорбции) в уравнении (640) определяют в зависимости от способа выражения движущей силы процесса. Если движущую силу выражают через концен- трации в газовой фазе, то уравнение для расчета К имеет вид  [c.337]

    Если естественная конвекция есть результат различия плотностей жидкости в различных местах ее объема, то вынужденная конвекция — работа подведенной извне электрической или механической энергии (электромагнитное перемешивание и барботаж жидкости путем -пропускания через нее газовой фазы). Возникающее при этом в объеме жидкости скорости приводят к выравниванию состава и температуры по объему. Даже при небольших затратах энергии, подведенной извне, перенос тепла в жидкости настолько интенсивен, что жидкое тело становится тонким телом. Газовая фаза может возникнуть и в самой жидкости, как это имеет место в сталеплавильной ванне. В данных случаях происходит интенсивный перенос тепла в условиях, когда практически отсутствует температурный градиент. Говорить здесь об условн 1х коэффициентах теплопроводности и передачи тепл-а конвекцией /неосновательно, поскольку эти понятия теряют реальный смысл в отсутствие градиента температур. [c.37]

    Пусть поверхность адсорбента однородна, тогда концентрация гааа в адсорбционном слое Са везде одинакова. Обозначим концентрацию в газовой фазе через с, а соответственно коэффициенты активности через уа и у- Тогда из закона распределения следует  [c.97]

    Полимерные порошки проводят тепло гораздо хуже, чем гомогенные системы, поскольку коэффициент теплопроводности большинства газов значительно ниже, чем у полимеров [/гвозд = = 0,026 Дж/(м-с-К) йпэнп = 0,182 Дж/(м-с-К)]. Площадь контакта между твердыми частицами мала. Тепло передается несколькими способами через твердые частицы, через контактные поверхности между твердыми частицами, через газовые прослойки в местах контакта, через газовую фазу, радиацией между твердыми поверхностями и радиацией между соседними порами. Ясно, что уплотнение будет влиять на большинство этих способов теплопередачи, поэтому не удивительно, что эффективный коэффициент теплопередачи чувствителен к уплотнению. Яги и Кунии [21] по экспериментальным данным построили математическую модель теплопроводности слоя частиц, которая в случае неспекшихся частиц и низких температур упрощается до следующего уравнения  [c.123]

    С некоторой ошибкой можно все же определить нужный момент "перепержки", если дожидаться, пока весь слой не станет равномерно полупрозрачным. Конечно, слой за намеченным уровнем необходимо предварительно удалить. Иначе молекулы подвижной фазы будут попадать (через газовую фазу) в эту зону, в результате чего величина коэффициента окажется искусственно завышенной. При "передержке" пластинки может наблюдаться повышение концентрации растворителя по всей площади пластинки (как показано на рнс. 17). Однако точное определение значений коэффициента оказывается довольно сложным и длительным, а потому практически нецелесообразным. Оцен1 а точного профиля градиента возможна, когда применяется специальный краситель с Кг=1. Если не считать возможности введения поправки с помощью параметра Кс (см. ниже), не существует способа точного и относительно удобного учета значений Кг для веществ, движущихся в зоне фронтального градиента (т.е. прн Кг >0.8). [c.159]

    Методика расчета через давление пара. В уравнении (6.9) оба коэффициента фугитивности относятся к паровой фазе, поэтому для определения коэффициентов фугитивности газовой фазы достаточно одного любого приемлемого уравнения состояния. Например, если используется уравнение (6.26), фугитивность насыщенного пара находят путем подстановки о, = о и 6, = Ь. Для определения коэффициентов активности можно воспользоваться любым приемлемым уравнением, но уравнение Скэтчарда — Гкльдебранда наиболее удобно, поскольку в него входят свойства только чистых компонентов. Если уравнение досгаточно точно, то допустима некоторая экстраполяция значений давления пара ряда компонентов до температур, превышающих критические. Другие методы расчета при сверхкритических температурах приведены в разд. 6.1.3 и 6.5. [c.311]

    Правильность некоторых значений средних коэффициентов активности для более высоких концентраций была независимым путем подтверждена Стоксом [30] с помощью метода, при котором раствор соли при 25° приводится в равновесие с водой, находящейся при более низкой температуре, через газовую фазу. Путем точного измерения разности температур находят температуру воды и определяют ее активность из данных но стандартным значениям, давлений пара, приведенным в International riti al Tables . Результаты, полученные для концентрированных растворов хлоридов натрия и кальция, а также для гидрата окиси натрия, свидетельствуют о том, что этот метод является весьма точным. [c.568]

    Рассматриваемые исходные вещества до их адсорбции и продукты реакции до их десорбции должны транспортироваться к поверхности катализатора или от нее через газовую фазу. Скорость, с которой происходят эти процессы, зависит от температуры, давления и скорости течения газа относительно поверхности. При нетурбулентном течении газа скорость массопередачи может быть относительно низкой и может действительно задерживать развитие реакции. В промышленных реакторах следует избегать такого положения, так как при давлениях, равных или выше атмосферного, самым медленным процессом часто является молекулярная диффузия. Когда реакция происходит в проточной системе, скорость газа обычно достаточно велика, чтобы массопередача происходила по механизму турбулентной диффузии. В таких условиях общая скорость реакции обычно не зависит от скорости массопередачи. Если N — скорость массопередачи на единицу поверхности ж кв — коэффициент массопередачи, то N может быть выражена через движущую силу, вызывающую массонередачу. Движущая сила будет представлять собой разность парциальных давлений в газовой фазе и слое у поверхности раздела газ — твердое тело. Таким образом, [c.403]

    Если известны и общая скорость реакции г и значение коэффициента массопередачи кц, то из уравнения, подобного уравнению (60), можно вычислить движущую силу. Численное значение р — Pi (представляющего собой разность мел ду давлениями в объеме газовой фазы и на границе раздела фаз) будет тогда определять, является ли массоперенос через газовую фазу скорость-определяющей стадией процесса по сравнению с адсорбцией, новерхностпой реакцией и десорбцией. Если (р — pi)/p < 1, то торможение реакции вследствие массопереноса пренебрежимо мало. С другой стороны, если р —Pi составляет большую часть от р, то тогда процесс массопереноса становится важным, и для вычисления общей скорости реакции должны использоваться значения парциального давления на межфазовой границе. [c.406]

    Отметим следующее обстоятельство, которое, как нам кажется, является важным для оценки характера пористости для скорости адсорбции. Из приведенных на рис. 56 и 57 кривых, которые имеют удивительное сходство с кривой проницаемости для щели (ср. рис. 12) видно, что скорость переноса органических паров через адсорбционную фазу понижается с увеличением среднего давления и составляет относительно малую долю по сравнению с количеством вещества, которое транспортируется через газовую фазу в макропорах. Для воды, на-лротив, скорость переноса в микропорах возрастает с увеличением давления и заметно превосходит скорость переноса в макропорах. Наблюдаемое на опыте медленное установление сорбционного равновесия в измерениях сорбции паров воды в области высоких относительных давлений следует приписать высоким значениям константы Генри, которая входит в эффективный коэффициент диффузии. [c.151]

    Здесь А — концентрация растворенного газа у поверхности раздела между жидкостью и газом, соответствующая условиям равновесия с парциальным давлением газа в газовой фазе. Пока будем считать, что парциальное давление газа одинаково во всех точках рассматриваемого элемента пространства. Влияние на это парциальное давление других газов, обладающих низкой растворимостью, будет рассмотрено в разделеУ-13. Символом а обозначена поверхность контакта между газом и жидкостью, заключенная в единице объема системы, — коэффициент физической массоотдачи в жидкой фазе. Величина Н представляет собой среднюю скорость переноса газа через единицу поверхности действительная же скорость массопередачи может меняться как от точки к точке, так и со временем. Значение Л соответствует средней концентрации растворенного газа в массе жидкости. [c.99]

    Концентрация воды у поверхности нефтепродукта принимается равновесной. Удаление воды из нефтепродукта интенсифицируется с увеличением площади контакта газовой фазы с жидкой, разности концентраций воды в них, коэффициента массопередачи. Площадь контакта может быть увеличена бар-ботированием газа через жидкукз среду, раз 1ость концентрации - созданием вакуума и понижением температуры. Поверхность контактирования при барботажной продувке газа равна [c.69]

    Концентрация растворенного в растворителе водорода является функцией парциального давления его в газовой фазе, коэффициента растворимости и скорости переноса газа к катализатору через растворитель. В первых трех растворителях скорости (исправленные) одинаковы, меньшая скорость реакции в этиловом спирте, по-видимому, объясняется его значительной вязкостью. Понижение вязкости способствует более быстрому переносу газа к катализатору, поэтому растворители с малыми Yj или нагревание ускоряют реакцию. Отсюда понятно, почему скорости гидрирования снижаются с увеличением молекулярного веса спиртов, применяемых как растворители например, СН3ОН, С Н ОН, С3Н7ОН и н-С Н ОН имеют соответственно величины г> 0,0061 0,0121 0,0223 и 0,0280. [c.49]

    Метод определения коэффициента молекулярной диффузии в газовой фазе на основе измерения высоты теоретической тарелки незаполненной сорбентом колонки при различных скоростях газа-носителя разработали Жуховицкий и Туркельтауб. Этому же вопросу посвящена работа Кнокса и Мак-Ларена и других авторов. Этим не ограничивается перечень физико-химических величин и свойств, которые могут быть измерены и изучены методами газовой хроматографии. Для всех этих величин и свойств характерно то, что они вытекают из единой первоначальной величины, а именно из объема удерживания. Таким образом, качественная природа вещества связана с его физико-химическими свойствами через объем удерживания. [c.188]

    На более низких уровнях иерархии могут быть использованы в качестве критериев показатели отдельных сторон процесса, например показатели процесса биосинтеза, такие, как коэффициент дыхания клеток— дых = а °7ао —удельный расход элемента питания на единицу образованного в процессе биосинтеза продукта— М = аУ dXldt), или с учетом стоимости элементов питания — а ps dX dt) степень утилизации субстрата — ф = = (5о—S)/Sq. Показателями процесса аэрации и перемешивания среды являются газосодержание фг коэффициент массопередачи кислорода KlO., удельные энергозатраты на аэрацию Nrl Klu )-, удельная, вкладываемая на перемешивание мощность V, масштаб турбулентных пульсаций X = и др. Эффективно использование комплексных показателей, охватывающих различные стороны процесса. Так, учитывая, что в биохимическом реакторе передача компонентов питательной среды к клеткам осуществляется посредством их транспорта из газовой фазы через жидкую либо непосредственно из жидкой фазы, для оценки эффективности данных процессов можно использовать в качестве критериев следующие показатели [11] Г—показатель, характеризующий процессы перехода из газовой фазы в жидкую L — показатель, характеризующий процессы передачи в жидкой фазе [c.28]


Смотреть страницы где упоминается термин Коэффициент через газовую фазу: [c.193]    [c.238]    [c.31]    [c.133]    [c.97]    [c.238]    [c.582]    [c.347]    [c.147]    [c.183]    [c.242]    [c.75]    [c.381]    [c.179]    [c.264]    [c.236]    [c.112]    [c.45]    [c.39]   
Дистилляция (1971) -- [ c.132 , c.134 , c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая фаза



© 2025 chem21.info Реклама на сайте