Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анаэробные превращения продуктов гликолиза

    Мы ограничимся здесь рассмотрением только того ряда реакций, для которого была впервые разработана эта схема (сокращенно ее называют схемой ЭМП). Речь идет о превращении глюкозы в этанол и СОг при спиртовом брожении в дрожжевых клетках и о превращении глюкозы или остатка глюкозы (происходящего из гликогена) в молочную кислоту (точнее, в ее соль — лактат) в мышцах животных. Ни тот, ни другой процесс не требуют кислорода. Оба они могут происходить в полностью анаэробных условиях и в этих условиях обеспечивать клетку всей необходимой энергией. Последовательность реакций гликолиза и промежуточные продукты этого процесса показаны на фиг. 85, а некоторые характеристики реакций, в том числе их термодинамические параметры и свойства соответствующих ферментов, суммированы в табл. 33 и 34. Прежде чем перейти к рассмотрению индивидуальных реакций, отметим наиболее важные особенности общей схемы. [c.278]


    Превращения глюкозы и гликогена в нервной ткани. Обмен углеводов в нервной ткани отличается, как мы видели, тем, что исходным субстратом в реакциях превращения углеводов нервной ткани является в основном глюкоза. Промежуточным продуктом окисления глюкозы является пировиноградная кислота, дальнейшие превращения которой были нами рассмотрены ранее (стр. 260). Гликолитический механизм превращения углеводов в мозгу может быть источником энергии как в аэробных, так и в анаэробных условиях, поскольку в мозгу обнаружен интенсивно протекающий не только анаэробный, но и аэробный гликолиз. [c.407]

    Ферментативный анаэробный распад углеводов исследуют при инкубации тканевого гомогената или экстракта с субстратами гликолиза (гликогеном, глюкозой, а также с промежуточными продуктами гликолиза). О процессе судят по приросту конечного продукта анаэробного превращения углеводов — лактата или убыли субстратов. Отдельные этапы изучают при добавлении в инкубационную среду ингибиторов ферментов или удалении диализом кофакторов и коферментов, необходимых для определенных реакций процесса анаэробного превращения углеводов. [c.49]

    Гликолиз — сложный, многоступенчатый внутриклеточный ферментативный процесс превращения гексоз, в основном глюкозы. Он имеет важное биологическое значение, заключающееся в обеспечении энергией живых организмов в анаэробных условиях. Промежуточные продукты гликолиза широко используются клетками для биосинтеза различных веществ (например диоксиацетонфосфат для биосинтеза жиров), [c.175]

    АНАЭРОБНЫЕ ПРЕВРАЩЕНИЯ ПРОДУКТОВ ГЛИКОЛИЗА [c.260]

    Содержание АТФ и креатинфосфата в сердечной мышце ниже, чем в скелетной мускулатуре, а расход АТФ велик. В связи с этим ресинтез АТФ в миокарде должен происходить намного интенсивнее, чем в скелетной мускулатуре. Для сердечной мышцы теплокровных животных и человека основным путем образования богатых энергией фосфорных соединений является путь окислительного фосфорилирования, связанный с поглощением кислорода. Регенерация АТФ в процессе анаэробного расщепления углеводов (гликолиз) в сердце человека практического значения не имеет. Именно поэтому сердечная мышца очень чувствительна к недостатку кислорода. Характерной особенностью обмена веществ в сердечной мышце по сравнению со скелетной является также то, что аэробное окисление веществ неуглеводной природы при работе сердечной мышцы имеет большее значение, чем при сокращении скелетной мышцы. Только 30—35% кислорода, поглощаемого сердцем в норме, расходуется на окисление углеводов и продуктов их превращения. Главным субстратом дыхания в сердечной мышце являются жирные кислоты. Окисление неуглеводных веществ обеспечивает около 65—70% потребности миокарда в энергии. Из свободных жирных кислот в сердечной мышце особенно легко подвергается окислению олеиновая кислота. [c.656]


    Таким образом, в анаэробных условиях, т. е. при кислородном голодании, в результате гликолиза в значительных количествах образуется тупиковый продукт — лактат, поскольку он не вступает ни в один биохимический процесс, кроме обратного превращения в пируват. Накопление молочной кислоты в клетке приводит к понижению pH и, как следствие, к уменьшению активности гликолитического ансамбля ферментов, в результате чего гликолиз останавливается. [c.408]

    У всех млекопитающих глюкоза в клетках превращается в пируват и лактат по метаболическому пути, который называется гликолизом. Для вступления на этот путь необходимо предварительное фосфорилирование. Гликолиз может протекать в отсутствие кислорода (анаэробно), если конечным продуктом является лактат. Ткани, которые потребляют кислород (аэробные условия), способны осуществлять превращение пирувата в ацетил-СоА, который далее может вступать в цикл лимонной кислоты в этом цикле ацетил-СоА полностью окисляется до СОг и Н2О большая часть потенциальной свободной энергии процесса запасается в форме АТР в результате окислительного фосфорилирования (рис. [c.166]

    Периодические, автоколебательные явления свойственны процессу гликолиза — анаэробного превращения шестичленных сахаров в трикарбоновые кислоты, сопровождающегося синтезом АТФ (см. 2.10). Упрощенная схема процесса показана на рис. 16.10. В опытах Чанса, Гесса и сотрудников сначала были обнаружены затухающие концентрационные колебания в гликолизе, затем были открыты незатухающие автоколебания (1964). На рис. 16.11 показаны колебания концентрации одного из продуктов гликолиза — НАД.Нг, имеющие почти синусоидальный характер. Как показал Сельков, кинетика процесса в целом определяется несколькими узкими местами , обозначенными на рис. 16.10 цифрами 1—4. Обозначим через у скорость реакции 1, [c.522]

    Поскольку живые организмы появились на Земле еще в то время, когда ее атмосфера была лишена кислорода, то целесообразной стала простейшая форма биологического механизма получения энергии ка химических веществ — анаэробный гликолиз. Организмы, существующие в анаэробных условиях и получающие таким способом необходимую им энергию, образуют два класса. Облигатные анаэробы — более примитивный класс — объединяют относительно небольшое количество бактерий и беспозвоночных, обитают, как правило, в условиях очень пониженного содержания кислорода или же полного его отсутствия. Клостридии, динитрифицирующие и метанообразующие бактерии — типичные представители облигатных анаэробов. Более многочисленным является класс факультативных анаэробов. Такие организмы в анаэробных условиях способны получать энергию, сбраживая глюкозу или другие вещества путем того же биологического механизма, что и облигатные анаэробы. Попадая же в аэробные условия, они осуществляют окислительный распад органических субстратов тем же анаэробным способом, после которого образовавшиеся продукты претерпевают окислительное превращение с помощью молекулярного кислорода. Поэтому у факультативных анаэробов превращение глюкозы в бескислородных условиях обязательной является первая стадия, после которой наступает аэробная фаза — собственно дыхание. Такая схема гликолитических процессов характерна не только для бактерий, дрожжей, мицелляриых грибов, но и для всех многоклеточных организмов, в том числе и аэробных клеток высших животных и растений. [c.176]

    Накопление АМФ, АДФ приводит к стимуляции гликолиза, ЦТК и окислительного фосфорилирования, что обеспечивает восстановление резервов АТФ и креатинфосфата. В скелетных мышцах кроме аде-ниловых нуклеотидов (АТФ, АДФ, АМФ), креатинфосфата, креатина содержатся и другие небелковые азотистые вещества — карнозин ((3-аланил-гистидин) и ансерин (N-мeтилкapнoзин). Это имидазолсо-держащие дипептиды. Синтезируются из конечного продукта распада пиримвдиновых нуклеотидов — (3-аланина. Эти соединения активируют На , К -АТФазу, а также увеличивают амплитуду мышечного сокращения, предварительно сниженную утомлением. Скелетные мышцы содержат медленные (красные) и быстрые (белые) волокна (волокна I и II типа). Для волокон I типа характерны окислительные процессы, они содержат миоглобин и митохондрии. Волокна II типа получают энергию из анаэробного гликолиза. При определенной тренировке можно изменить состав мышц. У спринтеров работают волокна II типа (гликолитические). В первые 5 с тратится креатинфосфат как источник энергии. Затем используется глюкоза, полученная из гликогена и дающая энергию в гликолизе. Гликоген мышц быстро истощается. У марафонцев работают волокна I типа (окислительные). Основной источник энергии — АТФ, образующаяся при тканевом превращении глюкозы и жирных кислот крови. Гликоген мышц истощается медленно. [c.461]

    Гликолиз, как известно, представляет собой процесс анаэробный, осуществляющийся без участия свободного кислорода. Продукт гликолитического превращения гексозы — триоза — подвергается окислительным превращениям в серии реакций, называемых циклом трикарбоновых кислот, или циклом Кребса. В ходе этих реакций под воздействием соответствующих дегидрогеназ отщепляются атомы водорода, соединяющиеся при посредстве тех или иных оксидаз с кислородом воздуха. [c.233]



Смотреть страницы где упоминается термин Анаэробные превращения продуктов гликолиза: [c.145]    [c.287]   
Смотреть главы в:

Курс физиологии растений Издание 3 -> Анаэробные превращения продуктов гликолиза




ПОИСК





Смотрите так же термины и статьи:

Гликолиз

Гликолиз анаэробный



© 2025 chem21.info Реклама на сайте