Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс ферментативные в пищевой

    По мере развития химии и физики, химической и топливной промышленности, ракетной техники и космонавтики все большее значение приобретают процессы, происходящие с участием свободных радикалов. К таким процессам прежде всего относятся реакции горения и взрыва, термического крекинга и полимеризации. Проблемы стабилизации бензинов, смазочных масел, полимеров и резин, вопросы предотвращения окислительной порчи пищевых продуктов и лекарств также связаны со свободнорадикальными процессами. Даже биохимические процессы ферментативного окисления и торможения, по-видимому, являются реакциями, в промежуточных стадиях которых происходит образование свободных радикалов. [c.4]


    Г. солей, образованных сильной кислотой и сильным основанием, практически не происходит, реакция их растворов нейтральна. Г. имеет большое практическое значение, его используют для получения основных солей, гидроксидов, в промышленности для производства глюкозы, фурфурола, этилового спирта, многоатомных спиртов (глицерина), пищевых кислот Г. древесины и растительных материалов. Г. жиров — основа производства мыла и глицерина, ферментативный Г. применяют в пищевой текстильной и фармацевтической промышленности. Г. служит для очистки воды, в военном деле для дегазации (см. Дегазация). Г. минералов вызывает изменения в составе земной коры. Г. играет также большую роль в процессах жизнедеятельности живых организмов. [c.74]

    Помимо превращения и распределения углеводов, жиров и аминокислот в печени активно протекают процессы ферментативной детоксикации инородных органических соединений, например лекарств, пищевых добавок, консервантов и других потенциально вредных веществ, не имеющих пищевой ценности. Детоксикация обычно состоит в том, что относительно нерастворимые соединения подвергаются ферментативному гидроксилированию, в результате чего они становятся более растворимыми, легче расщепляются и выводятся из организма. [c.756]

    К таким процессам прежде всего относятся реакции горения и взрыва, термического крекинга нефти и полимеризации. Проблемы стабилизирования бензинов, смазочных масел, полимеров и резин, предотвращения окислительной порчи пищевых продуктов также связаны со свободно-радикальными процессами. Биохимические процессы ферментативного окисления и торможения, по-видимому, тоже являются цепными реакциями, в промежуточных стадиях которых происходит образование свободных радикалов. [c.98]

    Величина pH играет очень большую роль в протекании ферментативных процессов, столь важных для сельского хозяйства, а также для ряда отраслей промышленности (таких, как пищевая, гидролизная, виноделие, пивоварение, сыроварение и др.). Большинство биологических процессов протекает в средах слабокислых, нейтральных и слабощелочных (величина pH обычно не выходит за пределы 4—8). Для нормального развития сельскохозяйственных культур и для получения высоких и устойчивых урожаев необходима определенная реакция почвенного раствора. [c.205]

    Наряду с производством сыра процесс ферментативного свертывания молока используется для получения некоторых других распространенных пищевых продуктов (сырковой массы и т. п.), а также сычужного технического казеина, который применяют в различных отраслях техники (лаки, краски, покрытия, парфюмерные изделия и др.). [c.244]


    Основная задача охлаждения заключается в том, чтобы создать неблагоприятные условия для развития микробиальных и ферментативных процессов в пищевых продуктах. [c.97]

    Не менее важное значение имеет реакция среды и в области технической биохимии. Например, контроль технологического процесса и качества готовой продукции по величине pH имеет большое значение во многих отраслях пищевой, мясной и молочной промышленности, в частности в хлебопечении, сыроварении, пивоварении, переработке молочных продуктов, фруктов, овощей, изготовления кож, табака и многих других отраслях народного хозяйства. Величина pH влияет на протекание важных ферментативных процессов в гидролизной промышленности, крах-мало-паточном производстве, виноделии. [c.206]

    ФЕРМЕНТАЦИЯ. Биохимический процесс превращения веществ при переработке растительного и животного сырья. При Ф. главным образом формируются специфические свойства того или иного продукта, его вкус, цвет, аромат и др. Поэтому в пищевой, легкой и фармацевтической промышленности Ф.— основной технологический процесс. Примерами в этом отношении являются чайная, табачная, хлебопекарная отрасли промышленности. Предполагали, что Ф.—микробиологический процесс. Но в настоящее время благодаря исследованиям советских ученых окончательно установлен ферментативный характер этих превращений. Главную ро.иь в этом процессе играют ферменты, как ускорители процессов превращения веществ. Для нормального течения Ф. необходимо прежде всего разрушение тканей и клеток растительного и животного сырья, например помол зерна в мукомольно-хлебопекарном производстве, раздавливание виноградной ягоды в виноделии, томление и сушка табачного листа, скручивание завяленного чайного листа и т. д. Для нормального течения Ф. требуется также создание определенных условий — температура, относительная влажность воздуха и др. Чайный лист после завяливания подвергается скручиванию на специальных машинах — роллерах, где происходит разрушение тканей и клеток листа, содержимое которых подвергается биохимическим изменениям с участием ферментов. Листья чая содержат сложную смесь катехинов, которые при Ф. претерпевают окислительную конденсацию с образованием более сложных соединений. Катехины взаимодействуют не только между собой, но и с разными аминокислотами, образуя соединения, обладающие разными запахами, с сахарами, белками и другими соединениями. В результате сложных превращений при Ф. образуются цвет, вкус, аромат черного байхового чая. Ф. табака — автолитический процесс, происходящий в убитых тканях листьев после их томления и сушки. При этохм окончательно формируются характерные признаки качества табака, как сырья для получения табачных изделий. Изменяется химический состав табака, уменьшается содержание белкового азота и идет накопление растворимых азотистых соединений, ул1еньшается содержание никотина, идет распад углеводов, накопление ароматических со- [c.317]

    Использование синтетических антиоксидантов в самых различных областях химии, а также в пищевой промышленности приводит к контакту с ними широкие слои населения. Это заставляет обратить особое внимание на вмешательство антиоксидантов при попадании их в организм в процессы ферментативного окисления. Если токсичности антиоксидантов посвящен целый ряд работ, то о биологической активности этих соединений, об их способности вмешиваться в ферментативные окислительно-восстановительные реакции известно сравнительно немного. Даже в вопросе о функциях природных и эндогенных антиоксидантов, которые постоянно находятся в организме животных и человека, существует очень много неясного. [c.233]

    Получение инвертного сахара (почти эквивалентной смеси глюкозы и фруктозы) из пищевого сахара, или сахарозы, производят с помощью фермента инвертазы. Однако в связи с интенсивным развитием промышленного процесса ферментативной изомеризации глюкозы интерес к прикладному применению иммобилизованной инвертазы упал и процесс получения инвертного сахара из сахарозы был осуществлен пока только на опытном уровне. [c.31]

    В амперометрических ферментных электродах используют, как правило, окислительно-восстановительные ферменты, относящиеся к классу оксидаз, и катализирующие окисление различных субстратов кислородом. При этом в процессе реакции происходит потребление кислорода, а продуктом является пероксид водорода или вода. К одному из наиболее ценных соединений, анализ которого важен в медицине, микробиологической или пищевой промышленности, относится глюкоза. Ее определение с использованием ферментного электрода основано на реакции окисления глюкозы кислородом или искусственным акцептором электронов, катализируемое глюкозооксидазой. В процессе ферментативной реакции, протекающей в тонкой пленке иммобилизованной глюкозооксидазы, непосредственно контактирующей с электрохимическим детектором, в системе изменяются такие параметры, как pH раствора, концентрация кислорода и пероксида водорода. Причем их изменение происходит в строгом соответствии с определяемой концентрацией глюкозы, что позволяет ее количественно определить по соответствующему калибровочному графику. В соответствии с этим можно выбрать тот или иной способ детекции. Изменение концентрации кислорода регистрируется кислородным электродом, отделенным от исследуемого раствора проницаемой для газов мембраной. Электрохимическая реа Сция происходит при потенциале электрода, соответствующем предельному диффузионному току кислорода. При регистрации пероксида водорода в конструкции электрода отсутствует полупроницаемая мембрана и анализ глюкозы проводят при потенциале электроокисления пероксида водорода. [c.81]


    Ферментативный метод. Наиболее старым методом производства этилового спирта является ферментативный метод. Сущность его заключается в сбраживании крахмало- или сахаросодержащих пищевых продуктов (картофель, зерно, меласса и др.) с помощью бактерий, которые в процессе своей жизнедеятельности перерабатывают углеводы в этиловый спирт и углекислоту. [c.26]

    Технологическое оформление процесса простое, оборудование относительно недорогое. Однако высокая себестоимость продукции вследствие высоких цен на пищевое сырье обусловливает неэффективность ферментативного метода производства к-бутанола. [c.65]

    Большое значение имеет ферментативный катализ в пищевой технологии. Практически нет ни одной отрасли пищевой промышленности, в основе технологии которой не лежали бы биологические ферментативные процессы. [c.112]

    Недостаток витамина Е у животных приводит к возникновению отклонений в деятельности различных органов и систем организма, что связано, по-видимому, с нарушениями метаболизма жирных кислот и многих других ферментативных процессов. Примечательно, что многие признаки и симптомы, появляющиеся у животных при недостатке витамина Е, внешне напоминают болезненные состояния у людей. Однако необходимость присутствия витамина Е в пищевом рационе человека и его ценность с точки зрения терапии доказаны еще недостаточно. [c.217]

    Под биомассой здесь понимается вся совокупность веществ и материалов, побочных продуктов пищевой и перерабатывающей промышленности, которая может служить сырьем для получения ценных продуктов. Производство этанола или фруктозы из молотого зерна происходит в несколько ферментативных стадий. Участвующие в этих процессах ферменты часто используются однократно. Чтобы повысить эффективность ферментативных реакций и снизить стоимость процессов, исследователи занимаются клонированием и исследованием свойств бактериальных генов, кодирующих термостабильные, обладающие высокой каталитической активностью и устойчивые к действию спирта ферменты. [c.302]

    Ферментативные методы широко применяют при анализе разнообразных объектов — медицинских (биологических жидкостей, крови, тканей живых организмов) пищевых продуктов фармацевтических препаратов для непрерывного контроля микробиологических и биохимических процессов в производстве. Эти методы используют для определения токсичных органических и неорганических соединений в объектах окружающей среды — сточных и природных (речных, морских, подземных и др.) водах, почвах, листьях растений и т. д. [c.113]

    Крахмал широко применяется в различных отраслях промышленности. Из него получают сироп и глюкозу, он является главной составной частью пищевых продуктов (хлеб, крупа, мука, картофель, кукуруза). Из крахмала в ферментативных процессах получают этиловый спирт, н-бутиловый спирт, молочную и лимонную кислоты и др. Используют крахмал в текстильной промышленности и для изготовления красок и клеев. [c.520]

    В Англии и Франции до 30-х годов спирт производился в основном ферментативной переработкой пищевого сырья. В Германии существовал комбинированный способ переработки пищевого сырья ферментативный процесс сочетался с гидролизом белково-углеводных остатков брожения. В США было организовано производство спирта путем гидролиза древесины в скандинавских странах спирт получали из целлюлозно-сульфитных щелоков лесохимических предприятий. Все эти пути не могли, однако, полностью удовлетворить возраставший спрос на спирт, в особенности после того как часть его стала расходоваться на топливо. В СССР спирт стал особенно дефицитен с 30-х годов в связи с общим развитием промышленности и особенно производства синтетического каучука по способу Лебедева. [c.263]

    В связи с тем, что для развития микробиальных и ферментативных процессов необходимы благоприятные физические условия, порча пищевых продуктов будет начинаться и протекать лишь при положительных температурах и повышенной влажности. Для предупреждения этих процессов необходимо снизить до определенного предела температуру и влажность воздуха. Это снижение температуры не оказывает отрицательного влияния на витаминный состав продуктов и не вызывает изменений в составе белков, жиров и углеводов. [c.82]

    В основе технологии очень многих пищевых продук- тов лежат ферментативные процессы. Как показано в гл. IV 14, каждый фермент проявляет активность при строго определенной концентрации ионов водорода, т. е. при определенном значении pH среды. При отклонении pH от оптимального значения для данного фермента активность его резко снижается и тот биологический процесс, в котором он участвует, за- медляется или совсем прекращается. Поэтому кот роль pH при различных ферментативных процессах является обязательным. [c.143]

    Своеобразную и важную роль играют многие процессы ферментативного катализа. Катализаторами в них служат ферменты (энзимы), которые представляют собой сложные органические вещества, принадлежащие обычно к белкам с высоким молекулярным весом, вырабатываемым в животных или растительных организмах и обладающим высокой каталитической активностью. Каждый фермент катализирует определенный химический процесс или определенную группу химических превращений. Ферментативный катализ играет больщую роль п жизнедеятельности организмов и широко используется в промышленности н в быту, в особенности при переработке пищевых продуктов (хлебопечение, квашение, винокурение и др.). При этом основными являются процессы брожения, т. е. такие процессы, в которых изменение химического состава вещества происходит в результате жизнедеятельности тех или других микроорганизмов, например дрожжей, плесеней или соответствующих бактерий. Действующим началом в этих случаях служат различные ферменты, вырабатываемые этими микроорганизмами, Ферменты сохраняют свою активность и способндсть действовать и будучи выделенными из микроорганизмов. [c.494]

    На базе достижений различных отраслей науки значительно продвинется вперед технология пищевых производств. Так, открытие структуры а-спирали стимулировало познание строения белка аналогичные успехи имеются и в химии углеводов. Развиваются также методы изучения комплексов типа липопротеи-нов. Эти и другие исследования помогут нам глубже понять физическую природу пищевых веществ и найти возможные пути их модифицирования. Другим перспективным направлением является изучение ферментативных процессов. В настоящее время разрабатываются простые синтетические системы, имитирующие природные ферменты, и рассматриваются различные непрерывные процессы ферментативного синтеза пищевых продуктов. Здесь следует ожидать существенного прогресса, однако пройдет еще немало времени, прежде чем наука полностью переведет производство продуктов питания из области искусства в область технологии. [c.614]

    Соотношение анаболизма и катаболизма хорошо охарактеризовал Г. Корнберг В ходе катаболических процессов из пищевых источников углерода образуются взаимопревращаемые промежуточные продукты центральных путей обмена анаболические же пути представляют собой последовательности ферментативных реакций, в процессе которых из этих промежуточных продуктов образуются строительные блоки, входящие в состав макромолекул. Таким образом, в то время как катаболические пути имеют совершенно определенные исходные вещества, но не имеют однозначно идентифицируемых конечных продуктов, анаболические пути, начинаясь Ьт неопределенных рубежей, ведут к ясно различимым конечным продуктам . [c.273]

    Ежегодно в мире производится более 200 тыс. тонн аминокислот, которые используются в основном как пищевые добавки и компоненты кормов для скота. Традиционным промышленным методом их получения является ферментация, однако все большее значение приобретают химические и особенно ферментативные методы синтеза различных аминокислот. Наибольший удельный вес в промышленном получении аминокислот имеет лизин и глутаминовая кислота, в больших количествах производят также глицин и метионин. Аминокислоты, особенно незаменимые, т. е. не синтезирующиеся в организме, представляют большой интерес в первую очередь для медицины и пищевой промышленности. Фенилаланин является предщественником ряда гормонов, осуществляющих многие регуляторные реакции в организме, метионин — основной донор метильных группировок при синтезе адреналина, креатина, а также источник серы при образовании тиамина, валин участвует в синтезе пантотеновой кислрты, треонин — предшественник витамина B 2 и т. д. Следовательно, дефицит аминокислот, способствующий нарушению многих обменных процессов, должен восполняться за счет введения соответствующих экзогенных аминокислот.- [c.26]

    Гели могут быть получены при желатинировании растворов полимеров и золей или при набухании ксерогелей (хегоз по-гречески — сухой), например пластинок столярного клея, сухого желатина, крахмала и др. Кроме того, они могут образоваться в результате реакций полимеризации и конденсации, например получение пластмасс, каучука и т. п. Такие пищевые продукты, как простокваша, кефир, сыр и др., представляющие собой гели, могут быть получены под воздействием ферментативных процессов. [c.197]

    Глюкоза и другие моносахариды, получаемые в результате гйдролиза природных полисахаридов (целлюлозы, гемицеллюлоз, крахмала) являются важнейшими компонентами питания человека, животных и микроорганизмов и служат дешевым источником сахаров для удовлетворения постоянно возрастающей потребности в сырье пищевой, микробиологической, медицинской и химической отраслей промышленности Из глюкозы с помощью разнообразных химических, ферментативных и микробиологических процессов получают белковые и ферментные препараты, фруктозу и другие сахаристые вещества, аминокислоты, органические соединения разных классов, в том числе кислоты, спирты, антибиотики, важнейшие мономеры и т д Очевидно, что развитие химической и биохимической технологии приведет к значительному расширению ассортимента полезных продуктов С проблемой гидролиза полисахаридов тесно связана разработка новых подходов к биоконверсии энергии, поскольку гидролитическая стадия играет важную роль в получении газообразного топлива (биогаза) из растительной биомассы Особенно важной представляется возможность получения из глюкозы этанола с целью его использования в качестве топлива (или добавки к традиционному жидкому топливу) для двигателей внутреннего сгорания [c.4]

    При гидролитическом прогоркании происходит гидролиз жира (триацилглицеринов) с образованием свободных жирных кислот. Химизм этого процесса был рассмотрен ранее. Автокаталитиче-ский гидролиз протекает с участием растворенной в жире воды скорость его при обычных температурах невелика. Ферментативный гидролиз происходит при участии фермента липазы на поверхности соприкосновения жира и воды и возрастает при эмульгировании. При получении жира и во многих других процессах пищевой технологии липазы инактивизируются (теряют свою активность), поэтому гидролитическое прогоркание, активно идущее при хранении липидсодержащего сырья и некоторых продуктов, не оказывает большого влияния на качество ряда хранящихся жиров и масел. Необходимо также отметить, что приобретение неприятного вкуса и запаха наблюдается при гидролизе жиров, содержащих низко- и среднемолекулярные кислоты (например, кокосового и пальмового масел), которые обладают неприятным запахом и вкусом. Высокомолекулярные кислоты вкуса и запаха не имеют (а именно они содержатся в большинстве масел и жиров) и повышение их содержания не приводит к изменению вкуса масел. [c.35]

    С использованием энергии сопряженного окисления нефти образуется в конечном счете и вся сложнейшая гамма соединений, входящих в состав живого вещества. Во всех этих и в других подобных случаях в живом ор-я анизме действуют биокатализаторы — ферменты. Некоторые из ферментов удалось выделить в индивидуальном виде с сохранением вне живого организма их специфического каталитического действия. Ферментативные препараты широко используются в пищевой и легкой промышленности и приобретают применение в медицине. Следовательно, для проявления каталитических свойств многих ферментов участие живого организма не требуется. Это показывает отсутствие принципиальных, непреодолимых границ между биологическим и обычным катализом, хотя пока в биокатализе господствуют органические катализаторы, а в обычном — неорганические, и по химическому строению и каталитическим свойствам ферменты сложнее и совершеннее. Нои эти различия смягчаются благодаря появлению новых классов органических и металлоорганичееких искусственных катализаторов. Это органические полимерные иониты и полупроводники, разноо бразные комплексы переходных металлов с органическими и неорганическими лигандами и т. д. Поэтому каталитические процессы, встречающиеся пока только в живом организме, можно надеяться осуществить в будущем с помощью искусственных катализаторов. Это же справедливо и для многих других реакций, пока не осуществленных ни в обычном, ни в биологическом катализе. [c.10]

    Другие виды применения перекиси водорода в обработке пищевых продуктов, не связанные с ее консервирующим действием, следующие пекарная добавка для поднятия теста (см. стр. 510) улучшение вин и коньяка [223] (ускоряет созревание, вероятно путем превращения сивушного масла в альдегиды в результате реакции с перекисью водорода перекись способствует также уст) анению побурения белых вин) обесцвечивание красного свекловичного сока [224] регенерация культуральных сред [225] очистка дрожжей от горьких начал [226] стабилизация лецитина [227] улучшение органолептических свойств пищевых масел [228] модификация пищевых крахмалов и камедей [229] улучшение вкуса кофейных экстрактов [230[ отбелка яиц в скорлупе [231] устранение изменения цвета пищевых крабов [232[ бланшировка овощей [233] отбелка мононатрийглутамата отбелка требухи, желатина и яичного желтка и отбелка орехов и сушеных фруктов для улучшения их внешнего вида. Новым достижением [234] является процесс, устраняющий один из источников неприятного развития запаха и вкуса в сушеных пиш,евых продуктах. Это—ферментативный процесс, в котором глюкозооксидаза потребляет сбраживаемые вещества, нанример из яичного белка перекись водорода является наиболее удобным источником кислорода для этой аэробной реакции. Большие количества перекиси водорода находят косвенное применение в пищевой промышленности в виде перекиси бензоила, пироко примеияел40й для отбелки муки. Такая отбелка, обусловленная окислением ксантофилла, происходит быстро и равномерно, однако она не сопровождается одновременным созреванием, т. е. улучшением пекарных свойств муки. [c.517]

    Величина pH играет очень большую роль в протекании ферментативных процессов, столь важных для сельского хозяйства, а также для ряда отраслей промышленности (таких, как пищевая, гидролизная, виноделие, пивоварение, сыроварение и др.). Большинство биологических процессов протекает в средах слабокпслых, нейтральных и слабощелочных (величина pH обычно не выходит за пределы 4—8). [c.250]

    Сотни протекающих в клетке химических реакций, катализируемых ферментами, организованы в виде множества различных последовательностей идущих друг за другом реакций. Такие последовательности могут состоять из нескольких реакций-от 2 до 20 и более. Одни из этих последовательностей ферментативных реакций приводят к расщеплению органических пищевых продуктов на более простые соединения, причем в процессе такого расщепления из них извлекается химическая энергия. Другие последовательности реакций, требующих затраты энергии, начинаются с малых молекул-предпгественников, которые постепенно соединяются друг с другом и образуют крупные и сложные макромолекулы. Все эти цепи взаимосвязанньгх ферментативных реакций, составляющих в совокупности клеточный метаболизм, имеют множество узловых точек. [c.18]

    Весьма интересно использование амилаз при получении паток и сахаристых продуктов методом двойного гидролиза, когда ферменты применяются на второй стадии гидролиза, после кислотного. Они обеспечивают более глубокий распад, расщепление декстринов и, следовательно, повышение содержания сахаров. При этом обеспечивается возможность широких изменений состава и физико-химических свойств продуктов. Представляет интерес процесс получения из крахмала глюкозных продуктов (пищевая глюкоза, глюкозный сахар), в котором главную роль играет глюкоамилаза. В производстве глюкозы применяют смесь препаратов из Asp. oryzae и Asp. awamory в последнем глюкоамилазы особенно много. В Японии глюкозу получают исключительно ферментативным гидролизом с большим выходом. [c.231]

    Глутаминовая кислота относится к важнейил1м аминокислотам производство ее с каждым годом возрастает. В течение длительного времени сырьем для получения глутаминовой кислоты являлись белковые гидролизаты, получаемые из различных пищевых продуктов. Позднее получил больщое распространение ферментативный метод получения Ь-глутаминовой кислоты, который однако представляет собой весьма сложный процесс. , [c.48]


Смотреть страницы где упоминается термин Процесс ферментативные в пищевой: [c.395]    [c.200]    [c.40]    [c.3]    [c.172]    [c.399]    [c.167]    [c.168]    [c.461]    [c.283]    [c.417]    [c.525]   
Физическая и коллоидная химия (1988) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте