Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термостойкость бетона

    ПОРОШКОВЫЕ КРАСКИ, высокодисперсные композиции, применяемые для получения защитных, Д(-ко])атив ых и др. покрытий по металлу, бетону, стеклу, керамике и др. термостойким материалам. Осн. компоненты — пленкообразующие в-ва (эпоксидные или полиэфирные смолы, полиакрилаты, полиамиды, поливинилхлорид, пентаплаа, полиэтилен, поливинилбутираль, фторопласты и др.) и пигменты, напр, оксиды Сг, ре, Т , сажа содержат, крометого, пластификаторы, наполнители, отвердители, стабилизаторы, а также добавки, улучшающие сыпучесть краски н ее растекание по подложке. Изготовляют П, к. смешением сухих компонентов в мельницах (напр,, шаровых, коллоидных) или в турбосмесителях, а также смешением в расплаве в экструдерах или лопастных смесителях с послед, измельчением в дробилках. Размер частиц П. к. 10—300 мкм, толщина образуемых ими покрытий 50—400 мкм. [c.474]


    Для получения термостойких бетонных изделий в условиях, когда обычный бетон становится пластичным, например при 300° С, применяются глиноземистые цементы. Их приготавливают сплавлением известняка и боксита, однако примеси в исходных материалах могут понижать прочность конечного цемента. Приготовленный из очень чистых известняка и глинозема, размолотый сплавленный материал после превращения в цемент может использоваться при температурах выше 1650° С [26]. [c.224]

    При применении менее термостойких заполнителей, как, например, магнезита, хромита или дунита, термостойкость бетона значительно понижается. [c.50]

    Регенераторы крекинг-установок флюид представляют собой вертикальные сосуды с днищами конической и реже полусферической формы. Изнутри корпус регенератора облицовывают, так как в этом случае можно применить для его изготовления углеродистую сталь, уменьшить температуру и толщину металлических сте.нок и предотвратить их абразивный износ. Корпус изготовляют из листов стали толщиной 22—30 мм. Облицовку выполняют либо из термостойкого бетона с армирующей сеткой, либо из огнеупорного и изоляционного кирпича. Толщина облицовки 8—18 см. [c.154]

    АФС используют при изготовлении магнезитовых огнеупорных бетонов (плавленый магнезит). Их термостойкость достигает 15—17 циклов при 1300 °С. Если изготовляют огнеупорный бетон на основе корунда и АФС, то отверждение ведут при 150—200 °С, причем устойчивость достигается после прогрева при 450—500 °С. Для таких бетонов нет огневой усадки, и увеличение линейных размеров при нагреве не превышает 0,2 %. Огнеупорные бетоны получают на основе АФС (15 %) и кварцитов (или кварцевого песка), а также АФС с наполнителем — карбидом кремния. Характеристики огнеупорных бетонов приведены в табл. 33. [c.135]

    Регенератор — это вертикальный цилиндрический сосуд с днищами конической формы. В зависимости от количества сжигаемого кокса диаметр регенератора составляет от 6 до 18 м, общая высота от 12 до 20 м. Корпус регенератора внутри облицовывают термостойким бетоном с армирующей сеткой толщиной от 8 до.18 см или огнеупорным кирпичом. Это позволяет изготовлять корпус регенератора из углеродистой стали, снижает толщину и температуру металлических стенок и удлиняет срок службы регенератора. Наружную поверхность регенератора (и реактора) облицовывают для уменьшения теплопотерь специальным кирпичом. [c.175]

    Как видно, полимер-бетон значительно превосходит по свойствам обычный цементный бетон. Незначительная пористость обеспечивает ему непроницаемость для воды, нефтепродуктов и газов. Термостойкость бетона на основе ФА достигает 150—200° С. [c.605]


    Для футеровки аппаратов широко применяют замазку арза-мит, обладающую кислотостойкостью и термостойкостью при, температуре до 250 °С, а также кислотостойкий и жароупорно-кислотостойкий бетоны. [c.37]

    Реакторы с кипящим слоем катализатора, работающие при вы-соких температурах (порядка 600—650 °С), выполняются из стали марки ст. 3, внутренняя часть их футеруется специальным термостойким торкрет-бетоном. В зависимости от мощности производства реакторы бывают диаметром от 2,5 до 12 м. Современный реактор имеет диаметр до 9 м и высоту около 45 м. [c.147]

    Покрытия подвергают холодной сушке (для ускорения их можно нагревать до 80—100°С). Они отличаются хорошей адгезией как к металлам, так и к бетону и пластмассам. По стойкости к действию минеральных кислот и щелочей (25%-ных растворов), агрессивных газов они равноценны хлоркаучуковым материалам, а по термостойкости превосходят их (до 200°С). [c.245]

    Выгрузное устройство в печи — улита имеет диаметр 4,5 м. В зоне обжига шахта имеет цилиндрическую форму. Вверху и внизу шахта имеет коническую форму. Сужение в верхней части обусловлено уменьшением габарита загрузочного механизма и облегчением более равномерного распределения шихты. Сужение в низу печи вызвано использованием улиты с диаметром 4,5 м п с целью улучшения теплообмена между охлаждаемой известью и нагревающимся воздухом при меньшем сечении печи. Шахта печи покоится на восьми массивных чугунных опорных колоннах, на которые положено чугунное кольцо, являющееся основанием огнеупорной футеровки. Опорные колонны установлены на бетонный фундамент. Зону обжига в печи футеруют хромомагнезитовым кирпичом марки МХС7 и МХС14 в два слоя, 1-й толщиной 340 мм и 2-й — 230 мм. Хромомагнезитовый Кирпич обладает высокой огнеупорностью и термостойкостью [c.181]

    Хлоркаучуковые покрытия отличаются хорошей адгезией к различным подложкам (металлу, бетону, дереву и др.), долговечностью (в условиях эксплуатации при темп-рах не выше 40°С), атмосферо- и огнестойкостью, устойчивостью к действию минеральных к-т, щелочей, спиртов, алифатич. углеводородов, масел. От покрытий на основе сополимеров винилхлорида и перхлорвиниловых смол они отличаются лучшими декоративными свойствами (ббльшим блеском), но несколько меньшей долговечностью и термостойкостью. [c.414]

    Обогревающие змеевики полов открытых насосных выполнять из бесшовных труб условным диаметром не менее 4в мм с гнутыми калачами и отводами и со сварными стыками на прямых участках. Скорость движения в змеевике следует принимать не менее 0,25 м/с. Змеевик укладывать на бетонную подготовку строго горизонтально, толщину слоя бетона от верха трубы до отметки чистого пола принимать не менее 50 мм. На случай аварийного опорожнения змеевика предусматривать штуцеры для подвода сжатого воздуха. Трубопроводы, укладываемые в бетоне, должны иметь антикоррозийную защиту — покрытие термостойким лаком после тщательной очистки поверхности. [c.206]

    Регенератор — это вертикальный цилиндрический сосуд с днищем конической формы. В зависимости от количества сжигаемого кокса диаметр регенератора составляет 6—18 м, общая высота 12—20 м. Внутри корпус регенератора облицован термостойким бетоном с армирующей сеткой толщиной 8—18 см или огнеупорным кирпичом. Благодаря этому становится возможным изготовлять корпус регенератора из углеродистой стали, снизить толщину и температуру металлических стенок и удлинить срок Службы регенератора. Наружную поверхность регенератора (и реактора) облицовывают для уменьшения теплопотерь специальным кирпичом. Толщина металлической стенки корпуса регенератора 22— 30 мм. В регенераторе разлйчают четыре зоны распределения смеси закоксованного катализатора с воздухом плотного кипящего слоя отстаивания улавливания пыли в циклонных сепараторах. Некоторые регенераторы снабжены внутренними или выносными холодильниками для снижения температуры катализатора. Тепло используется для получения водяного пара. Для регулирования температуры продуктов сгорания в зоне отстаивания имеются разбрызгиватели воды. [c.84]

    Регенератор (рис. 77) — это вертикальный цилиндрический сосуд с днищами конической формы. В зависимости от производительности установки и количества сжигаемого кокса диаметр регенератора составляет 6—18 м, общая высота 12—20 м. Корпус регенератора внутри облицован термостойким бетоном с армирующей сеткой толщиной 80—180 мм или огнеупорным кирпичом. Это позволяет изготовлять корпус регенератора из углеродистой стали, снижает толщину и температуру металлических стенок и удлиняет срок службы регенератора. Наружную поверхность регенератора (и реактора) облицовывают для уменьшения теплопотерь специальным кирпичом. Толщина корпуса регенератора 22—30 мм. В регенераторе имеется четыре зоны распределения смеси закок- [c.161]

    Термическое расширение бетона на периклазовом цементе при нагреве до 1450°—1,47%. Термостойкость жаростойких бетонов на шамотном заполнителе 15—25 водяных теплосмен, а да хромитовом — порядка 5. Объемный вес бетонов с хромитовым заполнителем 3200 кГ/ж , а с шамотным—1800—2000 кГ/ж . Для ответственных конструкций состав бетонов подбирается специальной лабораторией, а для неответственных конструкций может быть принят из приведенных ниже. [c.34]


    Меламин применяется для производства меламино-альдегидных полимеров, лаков и клеев, обладающих высокой механической прочностью, малой электр0пр0Г50ДН0стью, воде- и термостойкостью. Метилолмеламины используются для склеивания древесины и получения высококачественных лаковых покрытий (см. с. 427). При химической модификации продуктов конденсации меламина и формальдегида образуются очень эффективные разжижители цементных бетонов, действующих одновременно и как ускорители твердения. Эти соединения называются суперпластификаторами . [c.261]

    Отсутствие прироста прочности можно объяснить тем, что спекание начинается при более высоких температурах. В целом динамика остаточной прочности примерно соответствует фосфатному газобетону на аналогичных заполнителях и АФС или АХФС. Термостойкость повышается по мере увеличения средней плотности бетона и в зависимости от величины последней составляет 10...25 воздушных теплосмен (табл. 3). Наибольшая термостойкость (при плотности 800 кг/м ) -30 теплосмен - даже превышает максимальную марку по термостойкости (Тг25), установленную для ячеистых бетонов по ГОСТ 20910. [c.14]

    Исследование кинетики изменения прочности шамотного газобетона показало рост прочности после сушки до 2,0...5,0 МПа. При последуюш,ем нагреве до 400, 600 и 800 С прочность меняется незначительно, нагрев до 1000 и 1200 С показал некоторое ее снижение. При МОО С возрастает усадка, заметно повышается прочность, что объяснимо началом спекания. Рост прочности при нагревании объясняется также большей активностью заполнителя (шамота), чем в корундовом газобетоне. Термостойкость значительно выше, чем у корундового бетона — 13...30 воздушных теплосмен у газобетона (то есть марки ТгЮ... Т2ЗО, см. табл. 4). Полученные результаты соответствуют свойствам газобетона на основе АФС. Установлено, что температура применения газобетона составляет 1400 С для марок В500, В600 и 1500 С - при плотности 700 кг/м . [c.16]

    ПЛАСТИКАЦИЯ ПОЛИМЕРОВ, происходит при нагрев, и (или) интенсивной мех. обработке материала. В результате пластикации (П.) облегчается переработка полимера в изделие. Прн П. каучуков уменьшается высокоэластическая и увеличивается пластич. составляющая их деформа-иии, гл. обр. вследствие деструкции макромолекул. П. пластмасс — размягчение (плавление) материала в условиях, исключающих возможность заметной деструкции. П. осуществляется в спец. обогреваемых узлах перерабатывающего оборудования (напр., при литье под давл.) или одновременно с др. технол. операциями (напр., при смешении полимера с ингредиентами, экструзии). Для П. каучуков используют также спец. машины (пластикаторы). ПЛАСТИКИ, то же, что пластические массы. ПЛАСТИФИКАТОРЫ, 1) вещества, к-рые вводят в состав полимерных материалов для придания (или повышения) эластичности и (или) пластичности при переработке и эксплуатации. Облегчают диспергирование ингредиентов, снижают т-ру технол. обработки композиций, улучшают морозостойкость полимеров, но иногда ухудшают их теплостойкость. Нек-рые П. могут повышать огне,- свего- и термостойкость полимеров. Общие требования к П. хорошая совместимость с полимером, низкая летучесть, отсутствие запаха, хим. инертность, стойкость к экстракции из полимера жидкими средами, вапр. маслами, моющими ср-ваМи. Наиб, распространенные П.— сложные эфиры, вапр. диоктилфталат, дибутилсебацинат, три(2-этилгексил фосфат. Использ. также минер, и невысыхающие растит, масла, эпоксидированное соевое масло, хлориров. парафины и др. Кол-во П. в композиции — от 1—2 до 100% (от массы полимера). Осн. потребитель П.— пром-сть пластмасс (ок. 70% общего объема произ-ва П. расходуется на изготовление пластиката). См. также Мягчители. 2) Поверхностно-активные добавки, к-рые вводят в строит, р-ры и бетонные смеси (0,15— 0,3% от массы вяжущего) для облегчения укладки в форму и снижения содержания воды. Широко используемый П. этого типа — сульфитно-спиртовая барда. [c.446]

    Большой интерес вызывают в иоследнее время смолы, получаемые из фурфурола и ацетона. Они отличаются высокой термо- и хемостойкостью и нашли применение в различных областях техники. Так, из этих смол изготовлен весьма прочный, водонепроницаемый безцементный бетон [329]. Термореактивная смола, полученная Каменским и Цейтлиным ири конденсации циклопентанона с формальдегидом, дает прочные, термостойкие (300° С) материалы [330]. [c.211]

    Деревянную и бетонную аппаратуру можно надежно освинцовывать только одним способом — путем обкладки рольным свинцом (металлизация дает пористые покрытия). Металлические аппараты, кроме этого, можно защищать методом гомогенного свинцевания. Сущность этого метода заключается в нанесении на защищаемую поверхность слоя расплавленного свинца, образующего беспористое, прочно закрепленное на подложке покрытие. К достоинствам такого покрытия, помимо его кисло-тостойкости, следует отнести нерастворимость в органических растворителях, теплопроводность и термостойкость, а также возможность использования в аппаратуре, работающей под вакуумом кро.ме того, покрытие хорошо сопротивля 1 ся вибрациям и не имеет сварных швов. [c.105]

    Углеграфитовые Ж. м. отличаются жаропрочностью в сочетании с высокой термостойкостью и низкой удельной массой. Жаростойкость таких материалов достигается нанесениел жаростойких покрытий. В тугоплавких стеклах и ситаллах жаростойкость сочетается со спец. оптическими свойствами и низким коэфф. термического расширения. Материалы на основе окислов и тугоплавких соединений, керамико-металличес-кие, композиционные и углеграфи-товыо материалы, жаростойкие бетоны и цементы получают из порошков с последующим формованием и отвердением (бетонов и цементов) или спеканием. Материалы на основе тугоплавких соединений и композиционные материалы могут быть получены методом горячего прессования. Металлические и некоторые композиционные Ж. м. на основе металлов получают методами металлургической технологии (плавление — литье — обработка давлением — термическая обработка) с целью получения заданных свойств. Для повышения жаростойкости на металлические и углеграфитовые материалы наносят жаростойкие нокрытия методами диффузионного насыщения, плазменного, газопламенного или детонационного напыления, газофазного (пиролитического), электрохим., хим. или электрофоретического осаждения. Так, молибденовые снлавы в результате обработки в парах кремния или в газовой смеси четыреххлористого кремния и водорода покрывают жаростойким слоем дисилицида молибдена. Аналогичная обработка углеграфитовых материалов приводит к образованию па их поверхности жаростойкого покрытия из карбида кремния. Высокая жаростойкость некоторых тугоплавких соединений и металлических сплавов определяется их способностью образовывать при высоких т-рах в контакте с хим. агрессивной средой поверхностные плотные слои тугоплавких нелетучих продуктов взаимодействия, являющихся диффузионным барьером и уменьшающих скорость хим. реакции. Так, многие силициды, карбиды хрома и кремния, [c.423]

    Лаки на основе меламиновых смол [112, 146, 160, 206, 207] хорошо совмещаются с алкидными, силиконовыми, винилацетат-ными и эпоксидными смолами и нитроцеллюлозой [106, 110,208]. Применяются они для всевозможных покрытий [120—122, 142, 153, 157], в том числе — по кирпичу, бетону [209] и железу [2101, для электроизоляции, в термостойких красках [105, 211, 212], для повышения прочности окрасок на ацетилцеллюлозе I213] и т. д. [c.107]


Библиография для Термостойкость бетона: [c.56]   
Смотреть страницы где упоминается термин Термостойкость бетона: [c.185]    [c.43]    [c.72]    [c.197]    [c.81]    [c.90]    [c.295]    [c.10]    [c.148]    [c.151]    [c.295]    [c.474]    [c.364]    [c.423]    [c.275]    [c.81]    [c.275]    [c.258]   
Смотреть главы в:

Химия полимерных неорганических вяжущих веществ -> Термостойкость бетона




ПОИСК





Смотрите так же термины и статьи:

Бетон



© 2025 chem21.info Реклама на сайте