Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Покрытия защитные получения

    Эффективную противокоррозионную защиту оборудование обеспечивают покрытия, для получения которых могут быть использованы основные методы нанесения покрытий в вакууме катодное распыление, термическое напыление и ионное осаждение. Из них наиболее перспективным вследствие высокой эффективности защитного действия является метод ионного осаждения в вакууме. [c.125]


    Кадмийорганические соединения еще менее реакционноспособны, чем цинкорганические. Используются как катализаторы полимеризации при получении высококристаллического полипропилена, применяемого для приготовления клеев, нанесения защитных покрытий и получения синтетических волокон. [c.598]

    В первой главе выполнено аналитическое исследование литературных источников по тематике, связанной с восстановлением работоспособности поврежденных стеклоэмалевых покрытий технологического оборудования. Приведены характеристики стекловидных покрытий, принципы получения покрытий, факторы, определяюш,ие сорбционно-диффузионные свойства и химическую стойкость. Рассматриваются виды и причины механических напряжений в покрытиях. Приведены способы ремонта повреждений, в том числе предусмотренные ОСТ 26-01-166-84 Покрытия стеклоэмалевые и стеклокристаллические. Методы исправления . Наиболее распространенным и технологичным является ремонт путем нанесения на поврежденный участок специальных покрытий химически стойкими композициями. Однако на практике срок их защитного действия обычно не превышает 3 месяцев, а зачастую составляет менее 1 месяца. [c.7]

    Легирование и обработка металлических покрытий. Защитная способность покрытий зависит от физических и электрохимических параметров. Один из методов повыщения защитной способности покрытий — их легирование различными элементами и обработка составами, способствующими улучшению их физичесю1х параметров и электрохимических характеристик. Результаты исследований показали перспективность использования металлических покрытий в агрессивных средах нефтегазовой промышленности, в том числе в сероводородсодержащих. В сероводородсодержащих средах цинковые покрытия независимо от способа получения как при наличии ионов хлора, так и без них являются анодными по отношению к стали. В последние годы появилось значительное количество публикаций, в которых рассматривается вопрос увеличения защитной способности цинковых покрытий легированием их металлами [c.90]

    Электрохимические процессы имеют важное практическое значение. Эти процессы используются для нанесения защитных покрытий, для получения и очистки металлов, они лежат в основе действия химических источников электрического тока. [c.202]


    Потенциометрические исследования применительно к низкотемпературной коррозии выполнены И. И. Стри-хой [8.9]. Полученные материалы являются по существу первой попыткой применения электрохимических методов исследований коррозии воздухоподогревателей и дымовых труб. Развитие этих методов для энергетики представляется весьма перспективным, так как позволяет вскрыть глубинные особенности и его динамику, недоступные в традиционных методиках. Применение этих приемов желательно при исследованиях причин и характера разрушения эмалированных или покрытых защитными веществами поверхностей, а также при исследованиях ингибирующих добавок. [c.242]

    Жаростойкие покрытия. Способы получения. Защитные и физико-механические свойства. [c.287]

    Стандарт устанавливает методы ускоренных коррозионных испытаний металлических и неметаллических неорганических покрытий для получения сравнительных данных коррозионной стойкости и защитной способности покрытий [c.616]

    Первые попытки получения металлических покрытий на диэлектриках основывались на использовании открытия Фарадея, установившего возможность осаждения некоторых металлов, прежде всего серебра и меди, из растворов их солей с помощью восстановителей [1 —4]. Осажденные химическим путем слои металла весьма тонки (десятые доли микрона) и не обладают необходимой коррозионной и износостойкостью. После покрытия защитным лаком они могут служить только для декоративных целей. Поэтому обычно полученный на диэлектрике химическим путем слой металла служит лишь токопроводящей основой для нанесения гальванических покрытий. [c.130]

    Р. Н. Карповой и И. П. Твердовским [4] были получены сплавы палладия с медью и исследованы их физико-химические свойства. Электролит приготовляли смешением двух растворов хлористого палладия с добавкой азотистокислого натрия и сернокислой меди с добавкой сернокислого аммония. Раствор подкисляли серной кислотой. Электролиз вели при плотности тока 0,7 а/дм . При указанных условиях были получены мелкодисперсные осадки, которые не могут быть использованы в качестве защитных или специальных покрытий. Для получения компактных, твердых осадков сплавов металлов платиновой группы, например палладия с медью или с серебром, могут быть использованы такие комплексообразующие ионы, как циан и пирофосфат. [c.306]

    Гальванический метод осаждения защитных металлических покрытий получил очень широкое распространение в промышленности. По сравнению с другими способами нанесения металлопокрытий он имеет ряд серьезных преимуществ высокую экономичность (защита металла от коррозии достигается весьма тонкими покрытиями), возможность получения покрытий одного и того же металла с различными механическими свойствами, легкую управляемость процесса (регулирование толщины и свойств металлических осадков путем изменения состава электролита и режима электролиза), возможность получения сплавов разнообразного состава без применения высоких температур, хорошее сцепление с основным металлом и др. [c.149]

    Разработанные в последние годы новые способы защиты от коррозии изделий, изготовленных из легких металлов и их спла BOB, а также из тугоплавких металлов, позволяют значительно расширить область их применения. Как показали исследования советских и зарубежных ученых, реверсированный ток дает возможность значительно ускорить многие процессы электроосаждения металлов, а также способствует повышению срока службы металлических изделий. В процессах защиты металлов от коррозии все более возрастает роль ультразвуковых колебаний, химических методов создания на металлах защитных покрытий, методов получения термостойких и коррозионно стойких металлических сплавов из водных растворов солей металлов, роль неметаллических химически стойких материалов, применяемых взамен металлов, ингибиторов — замедлителей коррозии металлов в электролитах и в атмосфере и т. п. [c.3]

    Натуральные смолы уже давно используют в качестве декоративных и защитных покрытий. Для получения пленок смолы растворяют в летучих растворителях. Фактически пленка образуется после испарения растворителя. С давних времен при создании декоративных покрытий в состав пленок вводили пигменты минерального или органического происхождения. Полагают, что первые искусственные пигменты были открыты древними египтянами. [c.110]

    Электролизер для получения металлического кальцйя (рис. ХП-53) представляет собой печь с внутренней графитовой обкладкой, охлаждаемой снизу проточной водой. В печь загружается безводный СаСЬ, а электродами служат железный катод и графитовые аноды. Процесс ведут при напряжении 20--30 в, силе тока до 10 тыс. а и возможно низкой температуре (около 800 °С). Благодаря последнему обстоятельству графитовая обкладка печи остается все время покрытой защитным слоем твердой соли. Так как кальций хорощо осаждается лишь при достаточно большой плотности тока на катоде (порядка 100 a M ), последний по мере хода электролиза постепенно поднимают кверху, с тем чтобы погруженным в расплав оставался лишь его конец. Таким образом, фактически катодом является сам металличЬскИй кaльций (который изолируется от воздуха застывшей солевой коркой). [c.166]


    В книге рассмотрен комплекс вопросов, связанных с получением защитных полимерных покрытий электроосаждением водных систем на основе полиэлектролитов. Изложены современные физико-химические представления о процессе формирования покрытий. Описано получение защитных покрытий этим методом и применяемое оборудование. Приведены данные о составе лакокрасочных систем на основе полиэлектролитов, используемых для электроосаждения. [c.448]

    В главе 9, посвященной виниловым полимерам для органических защитных покрытий, вопросу получения и применения перхлорвиниловых смол не уделяется внимания, поскольку в США эти смолы не вырабатываются. Объясняется это, по-видимому, тем, что в США в широких масштабах производятся и применяются различные марки хлоркаучука — материала, близкого по составу и свойствам к перхлорвиниловой смоле. С другой стороны, использование в США винилхлорида для лакокрасочных целей идет по линии получения его сополимеров, в частности, сополимеров винилхлорида с винилацетатом. В то же время нужно отметить, что перхлорвиниловые смолы в ГДР, ФРГ и других странах производятся в значительных количествах. [c.314]

    Дисперсии представляют собой сложные коллоидные системы, состоящие из частиц полимерной фазы, покрытых защитным веществом, и распределенных в дисперсионной среде, содержащей растворимые и нерастворимые ингредиенты. В соответствии с этим свойства дисперсий и процесс пленкообразования из этих систем определяются тремя основными факторами структурой и строением частиц, природой и характером распределения на их поверхности защитных веществ, составом дисперсионной среды. Роль каждого фактора в процессе пленкообразования и влияние этих факторов на свойства материалов и изделий определяются условиями переработки дисперсий. При получении пленок высушиванием посредством удаления влаги образование контактов между частицами происходит при определенной концентрации системы, и последние два фактора не оказывают существенного влияния на механизм пленкообразования. Однако природа защитных и других веществ, содержащихся в дисперсионной среде и остающихся в пленке после окончания процесса формирования, влияет на их свойства. При осуществлении процесса пленкообразования через стадию желатинизации путем удаления дисперсионной среды на пористых подложках или при воздействии растворов электролитов часть защитных веществ уходит с поверхности частиц, что оказывает влияние на процесс структурообразования при формировании пленок. Особенно значительно влияние природы защитных веществ и характера их распределения на поверхности частиц проявляется [c.201]

    Для защиты используют плитки или пленки, которые отличаются малой теплопроводностью или при воздействии пламени деструктируют с высоким эндотермическим эффектом и выделением в газовую фазу неорганических частиц, участвующих в ингибировании горения. Наряду с ними применяют негорючие или трудносгораемые пенопласты и пенорезины, полученные на основе фторированных каучуков, а также покрытия на основе фторсодержащих полимеров. Например, эпоксидные стеклопластики, покрытые защитным слоем сополимера гексафторпропилена и винилиденфторида, выдерживают огневые испытания при 1093°С в течение 15 мин [119]. Аналогичный результат получают при использовании указанного покрытия для защиты алюминия. Покрытия получают газопламенным напылением или электростатическим методом, который нашел широкое применение [120, с. 377—381]. [c.101]

    Применение гидрофобных добавок с целью уменьшения гигроскопичности основывается на предотвращении, хотя бы частичном, возможности образования жидких пленок на поверхности твердых частиц. Их можно вводить обычным механическим смешением с основным продуктом. По сути дела, механическим смешением можно нанести на частицы продукта и различного рода защитные покрытия. Для получения защитных пленок применяются также гидрофобные соединения. Различие между использованием их в предшествующем случае и в данном сравнительно невелико. Оно сводится лишь к различиям в технологии введения добавки и механизме ее использования. Для защитных покрытий в большинстве случаев выбирают воскообразные вещества парафин, смесь технического вазелина с битумом, мазут, масла и т. д. [9]. Нанесение пленок производится в аппаратах барабанного типа. [c.148]

    Защитные покрытия. В химической промышленности такие металлические покрытия, как гальванические, диффузионные окисные, фосфатные, лакокрасочные, хотя и имеют большое значение в общем комплексе защитных мероприятий, тем не менее не являются характерным видом защиты против агрессивных химических сред. Причиной является невозможность полного устранения большей или меньшей пористости таких покрытий и получения, следовательно, достаточной надежности защиты. [c.229]

    Анодные покрытия. Если основной металл — железо — обнажено в поре анодного покрытия (например цинковом), покрытие подвергается анодному разрушению, в то время как железо играет роль катода. Если катодная плотность тока достаточно высока, железо может быть полностью защищено, тогда как покрывающий металл разрушается, защищая железо. Защита прекращается, как только анодный металл растворится настолько, что защищающая плотность тока уже больше не создается. Таким образом период, в течение которого имеет место защитное действие покрытия, зависит от скорости разрушения анодного металла и от толщины покрытия. С другой стороны, если анодный металл разрушается недостаточно быстро, катодная плотность тока может быть недостаточна, даже в самом начале, для защиты обнаженного железа. Таким образом, считая, что обнажение основного материала рассматривается как неизбежное явление — требуется некоторая осторожность в выборе металла покрытия для получения наилучших результатов, причем выбор должен зависеть от коррозионной среды. Железо, покрытое цинком и помещенное в растворе хлористого натрия, получает защиту даже в обнаженных местах (если только оголенная поверхность не очень велика), но цинк быстро растворяется и, как только он полностью растворится, начинается коррозионное воздействие на железо. Алюминий растворяется в таких растворах со скоростью, достаточной, чтобы обеспечить защиту в порах нормальной величины, но расходование алюминия протекает в то же время сравнительно медленно, обеспечивая покрытию значительную долговечность. Следовательно, для растворов хлористого натрия алюминий — более удовлетворительная защита, чем цинк. Но в жесткой пресной воде будет верно обратное положение, и именно цинк разрушается до- [c.680]

    Выбор процесса анодирования зависит от целей, которые пленка должна выполнить. Пленки, полезные для антикоррозионных целей, имеют как тонкий компактный барьерный слой, так и толстый пористый слой, служащий основой для наполнения ланолином или краской. Последний может также приобрести защитные свойства после обработки его паром или горячей водой. Боратные ванны, которые дают только барьерные пленки без внешнего пористого слоя, ценны для некоторых целей, например, в выпрямителях (детекторах) и емкостях, но они не используются для получения пленок защитными свойствами против коррозии. Выпрямляющий эффект обусловливает тот факт, что алюминиевый электрод, покрытый защитной пленкой, обладает свободными электронами в большей степени, когда он является анодом подобное ценное действие отмечено у титана и циркония. [c.232]

    Псевдоожиженный слой также применяют для получения гранулир. продуктов путем ввода в слой распыленных р-ров ияи струй газов, конденсирующихся с образованием твердых продуктов, напр, минер, удобрений, льда, AI I3 (см. Сублимация) для покрытия защитной полимерной пленкой нагретых деталей для проведения кристаллизации из р-ров, вьицелачивания (ожижающий агент-выщелачивающий р-р), растворения как высокотемпературный теплоноситель и т. д. [c.137]

    Хром легко пассивируется, поэтому широко используется в ка- естве гальванических защитных покрытий и для получения корро- ионностойких сталей. Молибден применяется для изготовления химической аппаратуры, вольфрам — в электротехнической промышленности (в частности, для производства ламп накаливания). 4олибден и вольфрам применяются в качестве катализаторов. Относительно чистый хром получают методом алюмотермии  [c.550]

    Возможно покрытие поверхности материала различными защитными пленками — термодиффузионными железо-алюминиевыми или железо-хромовыми — методами химико-термической обработки (хромирование и алитирование), нанесение металлокерамических покрытий, керметов, металлооксидных покрытий, для получения которых в качестве неметаллических ингредиентов применяют тугоплавкие оксиды (например, АГОз, МеО), карбиды и нитриды различных металлов. Металлическими составляющими таких покрытий могут служить тугоплавкие металлы — вольфрам, молибден, хром и т. п. [c.52]

    Структура рревесины в упрошенном виде представляет собой пучки ориентированных целлюлозных волокон, связанных воедино лигнинным связующим и снаружи покрытых защитной оболочкой, или корой. При варке целлюлозы сначала удаляют наружную кору и затем механическим или химическим путем разлагают древесину на компоненты и отделяют целлюлозные волокна от основного химического связующего. Свойства полученных волокон в большой степени зависят от механических н химических условий при измельчении и варке древесины. [c.79]

    В битумной лаборатории БашНИИНП были проведены испытания брикетов, полученных из распыленного битума, на слипае-мость под действием приложенной нагрузки при температуре окружающего воздуха 18—22°С. Испытания показали, что чистые брикеты слипаются через несколько часов брикеты, покрытые защитной пленкой, не слипаются в течение нескольких дней бри- кеты, обернутые в один слой бумаги, не слипаются между собой и очень слабо прилипают к бумаге. Поэтому в промышленных условиях рекомендуется покрывать брикеты защитной пленкой или обопачивать одним слоем бумаги. [c.37]

    Таким образом, можно сказать, что в настоящее время для нанесения контактов на полупроводники наибольшее применение нашли фторсодержащие электролиты сурьмиро-вания, обеспечивающие надежное сцепление покрытия с полупроводником, высокую чистоту осаждаемого металла, равномерность и хорошие электрические свойства покрытия. Для получения защитных и декоративных покрытий сурьмы практическое значение имеют в основном растворы на основе комплексов сурьмы с оксикислотами. Эти электролиты применяют для нанесения сурьмы в многослойных защитнодекоративных покрытиях с зеркальным блеском, стойких в тропических условиях, как РЬ—5Ь, Си—5Ь—Сг или РЬ— —5Ь—Сг. Коррозионные испытания показывают, что названные многослойные покрытия обладают лучшими защитными свойствами, чем такой же толщины покрытия никель— хром или медь—никель—хром [ ЗЭ, 44]. [c.222]

    Основными требованиями, которые, необходимо учитывать при разработке новых материалов для покрытий, являются получение покрытий минимальной толщины при сохранении высоких эксплуатационных характеристик снижение температуры формирова нпя защитного слоя придание покрытию специфических функциональных свойств. Например, разработаны составы на основе эпоксидных и виниловых полимеров, из которых получаются беспори-стые покрытия толщиной 15—50 мкм [8—10] с температурой отверждения 365 К [11]  [c.131]

    Лаки различного назначения, образующие теплостойкие прочные покрытия, которые обладают достаточно хорошими диэлектрическими показателями в интервале температур от —60 до +250 °С, а также в условиях повышенной влажности, Лаки применяются для получения электроизоляционных покрытий, защитных оболочек кабельных изделий, в производстве полупроводниковых приборов и в дпугих областях техники. [c.292]

    Покрытия на основе сополимеров стирола с малеиновым ангидридом или моноэфирами малеиновой кислоты и низших алифатических спиртов обладают сравнительно низкими эксплуатационными показателями из-за недостаточной эластичности и высокой остаточной гидрофильности пленок после термоотверждения. Формирование покрытий из водно-аммиачных растворов сополимеров стирола с моноалкилмалеинатами при термоотверждении связано в основном с физическим структурированием, которое сопровождается незначительными химическими изменениями за счет частичного декарбоксилирования, разложения сложноэфирных связей и образования межмолекулярных и внутримолекулярных имидных и амидных связей [97]. С увеличением длины алкильного радикала в моноэфире малеиновой кислоты происходит снижение растворимости сополимера в воде, связанное с изменением гидрофильно-гидрофобного баланса, улучшение защитных свойств и повышение эластичности покрытия. Пленки, полученные из водно-аммиачных растворов, прозрачны, бесцветны, обладают хорошим глянцем и адгезией. Однако сравнительно высокая остаточная гидрофильность пленок и неудовлетворительные защитные свойства покрытий не позволяют использовать стиромали в качестве самостоятельных пленкообразователей. В то же время они находят применение как добавки в пленкообразующие системы [100]. Сочетание стиромалей с модифицирующими и отверждающими добавками [c.59]

    Известный интерес представляет оригинальный способ изготовления пластинчатых теплообменных элементов, описаиньи в [3-17]. На металлическом (например, алюминиевом) листе наносится контур каналов, который затем покрывается специаль-ным составом, предотвращающим приставание металла другого листа на этих участках. Листы складываются, нагреваются и прокатываются, причем они свариваются по всей поверхности, за исключением участков, покрытых защитным составом. После сбрезки кромок, в результате которой вскрываются торцы будущих каналов, сваренные листы помещаются между двумя ограничивающи.ми плитами, и каналы расширяются гидравлическим давлением до заданного размера. Такой способ изготовления открывает широкие возможности получения каналов любой формы. [c.180]

    В зависимости от этого авторы предлагают осадки, полученные при очистке поверхностных водоисточников средней мутности, использовать в качестве керамического сырья, компонентов строительных материалов, в том числе цементов, бетонов, защитных покрытий осадки, полученные при очистке высокоцветных маломутных вод поверхностных водоисточников, использовать для получения пористых заполнителей и фильтрующих материалов. [c.37]

    Однако основной вред от коррозии связан чаще всего не только с потерей самого металла, но в гораздо большей степени с порчей металлических конструкций, имеющих, как правило, большую ценность, чем металл, из которого они сделаны. Если для железнодорожных рельсо1В стоимость металлического материала превь1шает стоимость изготовления, то для таких изделий, как автомобиль, самолет, точный прибор, стоимость изготовления намного превышает стоимость металла. Колоссальные затраты на всякого рода защитные мероприятия, например лакокрасочные покрытия, металлические покрытия, на получение более дорогих коррозионно-устойчивых сплавов и т. п., следует целиком рассматривать как убытки, приносимые коррозией, fie меньшие потери и увеличение расхода металла получаются вследствие отказа от работы и случайных аварий конструкций по коррозионным причинам, затрат на ремонт и переборку прокорродировавшего оборудования, ухудшения качества продукции, усложнения технологии, а также вследствие завышенных припусков размеров на коррозию при проектировании многих конструкций. Повышенные припуски связаны не только с увеличением расхода металла, по зачастую и с конструктивными ухудшениями. Для самолета, например, повышенные припуски ведут к нежелательному увеличению веса. Для трубопровода повышенная толщина стенок, помимо увеличения затрат металла, влечет за собой уменьшение полезного сечения и, следовательно, понижение пропускной способности магистрали. [c.11]

    Применение поверхностноактивных веществ для борьбы с огнем и предотвращения пожаров за последние годы прочно вошло в практику. Существуют четыре способа применения поверхностноактивных веществ в качестве противопожарных средств. Первый из них сводится к получению и стабилизации пен, используемых главным образом при тушении горящей нефти и лишь в некоторых случаях—при других пожарах. Второй метод заключается в диспергировании и эмульгировании горящей нефти водой, применяющейся для тушения. По третьему методу растворенные в воде поверхностноактйвные вещества с высокой смачивающей способностью облегчают смачивание водой и покрытие защитным слоем горящего объекта. Этот способ рассматривается как одно из наиболее важных достижений в борьбе с пожарами за последнее время. Водные растворы можно применять в виде струи или тумана, и в обоих случаях они значительно более эффективны, чем нераспыленные растворы. Наконец, поверхностноактйвные вещества применяют как добавки к воде, содействующие осаждению и собиранию самовоспламеняющихся пылей, например угольной или мучной. В этом методе водные растворы поверхностноактивного вещества либо распыляют, либо применяют в виде тумана. [c.506]

    Никелевые и хромовые покрытия. Метод получения блестящей поверхности на моторах и вращающихся частях, фурнитуре и т. п., основанный на относительно толстом покрытии никелем, за которым следует нанесение более тонкого покрытия хрома для предотвращения тускнения никеля, упомянут выше состав хромовой ванны обсуждался на стр. 557. Современные улучшения обсуждаются Силманом, который указывает, что хромовые покрытия обычно растрескиваются и часто мало что добавляют к защите основного металла. Покрытия, полученные при высоких температурах и низких плотностях тока, становятся высоко защитными, но перестают быть блестящими. Компромиссное решение наблюдается при 60° С и - 0,43 а/см , которые дают блеск и хорошую защиту с некоторым ущербом в рассеивающей способности [169]. Ванны для электроосаждения претерпели много изменений. В первое время часто использовался раствор аммо-нийсульфата никеля, который давал прекрасные осадки, но процесс электроосаждения длится при этом очень долго. Любая попытка использовать высокие плотности тока приводит к риску запассивировать аноды. Добавление хлоридов предотвращает пассивацию, а контроль pH добавлением борной кислоты позволил получить прекрасную быструю ванну Уотта. Эта ванна теперь является классической. Впервые о ней было сообщено в 1916 г. Позднее вводились другие составляющие, такие как, фторид и сульфат натрия, но даже в 1934 г. Кук и Эванс, обсуждая методы получения покрытий для автомобильной и велосипедной промышленности, еще рекомендовали ванну типа Уотта Современные ванны содержат блескообразующие добавки и им подобные. Очень важно исключить примеси нитраты, соединения мышьяка и некоторые органические коллоиды вредны последние могут быть разрушены с помощью перманганата, избыток которого, в свою очередь, разрушается добавлением перекиси водорода. Статьи, в которых обсуждается влияние состава ванн на качество осадка, следующие [170] данные о необходимых химических расчетах можно найти в литературе [171 ]. [c.597]

    Выяснение причин образования пор в осадках является одним из наиболее важных вопросов при электролитическом осаждении металлов. Обычно под термином поры подразумеваются макро- и микроканалы, проходящие от поверхности осадка до основного металла катода. В осадках металлов, полученных электролитическим путем, поры бывают самых различных размеров, что очень затрудняет точное определение их числа и размеров. В зависимости от условий и длительности испытания в одном и том же покрытии можно обнаружить поры или не обнаружить их. Так, при испытании образцов, покрытых защитным слоем определенной толщины, в жидких средах осадок может показаться беспори-стым, тогда как при испытании в более жестких условиях, а именно в атмосфере агрессивных газов, поры обнаруживаются. Таким образом, оценка пористости осадка является относительной. [c.151]


Смотреть страницы где упоминается термин Покрытия защитные получения: [c.85]    [c.576]    [c.797]    [c.304]    [c.33]    [c.254]    [c.240]    [c.242]    [c.128]    [c.331]   
Коррозионная стойкость материалов в агрессивных средах химических производств Издание 2 (1975) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

К Александрова, Р. Б. Шноль, Новое направление в получении защитно-декоративных покрытий

Назначение некоторых вспомогательных материалов, применяемых при получении защитных покрытий

Покрытия получения

ТЕХНОЛОГИЯ И АППАРАТУРА ДЛЯ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ МЕТОДОМ ЭЛЕКТРООСАЖДЕТехнология получения защитных покрытий методом электроосаждения



© 2024 chem21.info Реклама на сайте