Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа выхода электронов для простых веществ

    РАБОТА ВЫХОДА ЭЛЕКТРОНОВ ДЛЯ ПРОСТЫХ ВЕЩЕСТВ [c.333]

    Существует следующий простой способ обнаружения эффекта превращения параметров электрического сопротивления веществ. Рассмотрим катодную систему, состоящую из двух электродов, размещенных в земле, которая позволяет наблюдать переход количественных изменений в качественные. Для различных режимов источника (фиксированных напряжений от до и ) будем определять ток и активную мощность. Ситуация здесь аналогична хорошо известному случаю эмиссии. Выходя из металла, квазичастица преодолевает потенциальный барьер, совершая при этом работу выхода . Квазичастица ведет себя как электронный газ, частицы которого имеют различные скорости. Не каждая квазичастица, преодолевшая потенциальный барьер, может быть зафиксирована в виде со dg/dt. (Здесь ширина энергетической зоны зафиксированной квазичастицы значительно меньше всех других энергий и может рассматриваться как волна флюктуации массы, как квант энергии). Однако с ростом напряжения частота фиксации растет. Поэтому, если определять сопротивление, используя обычные формулы для квазистационарных процессов R iU/I, то параметр R с увеличением U практически не изменяется, при этом остается меньше аналогичного изменяющегося параметра, определяемого исходя из активной мощности R< >P/P. [c.63]


    При измерениях потенциалов появления положительных ионов энергетическая неоднородность электронов сказывается особенно существенно на начальном участке кривой ионизации, маскируя истинный ход кривой у порога ионизации. Кривые ионизации приближаются к оси энергии электронов асимптотически, так что определить строго однозначно порог появления ионов невозможно. Поэтому в многочисленных работах 50—60-х годов для определения ПП применяли метод сравнения кривой эффективного выхода исследуемых ионов с кривой выхода ионов, ПП которых хорошо известен. Вещество с известным потенциалом ионизации (обычно из спектроскопических данных) вводили в ионизационную камеру одновременно с исследуемым веществом. Влияние контактной разности потенциалов на энергию электронов исключалось, точность определения ионизационных потенциалов во многом зависела от метода сравнения двух кривых выхода (начальных участков кривых). Были разработаны методы сравнения линейная экстраполяция, метод критического наклона [63], экстраполированных разностей, исчезающего тока ионов и др. [64—67], которые широко применялись при определении потенциала появления ионов различных веществ. Точность определения ПП, за исключением самых простых случаев (сравнение [c.21]

    При стадш1ных схемах с переходами электронов моя но ожидать корреляции окислительно-восстановительных каталитических свойств твердых тел с работой выхода электронов (ф). Из-за большой чувствительности последней величины к ряду факторов и трудности ее измерения во время каталитического процесса проверить правильность этого вывода в общем вгще трудно. В ряде случаев можно считать доказанным наличие четкого соответствия между изменением активности катализаторов при простых реакциях или селективностью действия при сложных реакциях, с одной стороны, и изменением работы выхода при введении нелетучих или труднолетучих добавок — с другой [38]. Как было отмечено ранее [39], такой корреляции следует ожидать при различиях в заряженности исходных веществ и переходного комплекса реакции так как работа заряжения входит в свободную энергию образования комплекса. Таким образом удается объяснить влияние ряда нновалентных добавок на скорость окисления СО на МпОз и N 0 и влияние добавок щелочных и щелочноземельных металлов на активность железа в синтезе аммиака. При действии любого фактора, вызывающего заряжение поверхности, такой электростатический механизм способен приводить как к росту, так и к падению активности, и при этом не только у полупроводниковых, но и у металлических контактов, в зависимости от знака заряда переходного комплекса. [c.29]


    Уравнение (24) указывает на очень резкий, экспоненциальный рост значения j при повышении температуры. Экспериментальное определение постоянной Ричардсона часто дает значения величин, отличающиеся от теоретического значения на много порядков в ту или иную сторону. Эти отклонения для простых веществ (химиче--ских элементов) объясняются [413] отражением электронов от поверхности эмиттирующего тела (в случае Л<Ло) и температурной зависимостью работы выхода (при Л>Ло) [46, 51, 413]. Трактовка температурной зависимости работы выхода электрона в зоммер-фельдовском приближении сводится к эффекту уменьшения концентрации электронов в металле, связанному с тепловым расширением тела. Это, в свою очередь, понижает уровень электрохимического потенциала и, следовательно, увеличивает работу выхода электрона. [c.15]

    Большинство авторов отмечает, однако, что, по крайней мере в некоторых случаях, все объяснения, основанные на представлении о ведущей роли энергии отдачи, должны, повидимому, оказаться неправильными (даже с учетом отдачи при вылете электрона). То обстоятельство, что гз процессе перехода может разрываться даже связь С—Вг, несовместимо ни с каким механизмом, основанным только на отдаче. Энергия активации для реакции огромна. Некоторые авторы, сохраняя идею о важной роли внутренней конверсии, предполагали, что разрыв связи отнюдь не обязательно должен обусловливаться отдачей. Ряд результатов [99, 101, 113, 123, 124] интерпретировался в том смысле, что атом, будучи лишен своего электрона, переходит в некоторую активную форму. Фэйброзер [33] утверждает, что выделение активного вещества может быть обусловлено ...процессом, затрагивающим любую серию возбужденных молекулярных состояний, возникающих при постепенном успокоении атома брома после внутренней конверсии. Молекула не просто активируется, а разрывается в результате процесса, более похожего на фотодиссоциацию под действием внутримолекулярных квантов . Суэсс [111] подчеркивает роль положительного заряда после вылета фотоэлектрона при изомерном переходе Повидимому, ион НВг, сильно возбужденный благодаря вылету электрона с внутренней орбиты, за время перехода в нормальное состояние успевает распасться на атом Н и ион Вг . Было вычислено также [28] (для одного специального, сильно идеализированного случая), что в броме может иметь место множественный эффект Оже вслед за внутренней конверсией и вылетом электрона из внутренней оболочки на освободившееся место может перейти электрон из внешней части атома затем, вместо рентгеновского кванта, будет излучен еще один электрон и т. д. каждый раз положительный заряд атома увеличивается на единицу. Скорость эффекта оказывается больше, чем у конкурирующего процесса—непосредственного испускания рентгеновских лучей, так что в среднем в результате внутренней конверсии с К-оболочки атом Вг приобретает 4,7 единицы положительного заряда (принимая заряд электрона за единицу). По мере накопления заряда в атоме брома молекула делается все более и более неустойчивой, и, по мнению Купера [18], в конце концов, она должна диссоциировать. Эффект еще усилится, если молекула теряет электроны, ответственные за химическую связь. Этот вопрос рассматривался также в работе [23] в связи с изомерным переходом в Se i. В этой работе указывается также, что связь между коэффициентом конверсии и выходом отнюдь не проста. [c.110]


Смотреть страницы где упоминается термин Работа выхода электронов для простых веществ: [c.152]    [c.238]    [c.238]    [c.14]    [c.244]    [c.244]    [c.78]   
Смотреть главы в:

Справочник химика Издание 2 Том 1 1963 -> Работа выхода электронов для простых веществ

Справочник химика Том 1 Издание 2 1962 -> Работа выхода электронов для простых веществ

Справочник химика Том 1 Издание 2 1966 -> Работа выхода электронов для простых веществ

Справочник химика Изд.2 Том 1 -> Работа выхода электронов для простых веществ




ПОИСК





Смотрите так же термины и статьи:

Вещества простые

Вещество выход

Работа выхода

Работа выхода электрона

Работа электрона



© 2025 chem21.info Реклама на сайте