Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квант рентгеновского

    Механизм возбуждения. Чтобы атом испустил квант рентгеновского излучения hv, ему необходимо сообщить энергию. Это можно осуществить облучением пробы потоком электронов эмиссионная спектроскопия) или рентгеновским излучением достаточной энергии рентгенофлуоресцентная спектроскопия). Практически ввиду более легкого осуществления используют только второй способ возбуждения. Его преимущество заключается еще в том, что возникающий спектр флуоресценции имеет только характеристические спектральные линии, в то время как на эмиссионный спектр накладывается спектр непрерывного излучения. В рентгенофлуоресцентной спектроскопии пробу облучают полихроматическим излучением рентгеновской трубки и наблюдают возникающее вторичное излучение. Для перемещения электрона с занимаемого им основного уровня необходимо, чтобы энергия поглощаемого рентгеновского кванта hv была по меньшей мере равна работе ионизации. Если поглощаемая энергия больше, то избыточная энергия высвобождается в виде кинетической энергии фотоэлектрона. По истечении 10 с ионизированный атом ступенчато переходит в основное состояние. Рассматривая уменьшение энергии электрона при его переходе с верхнего уровня на нижний, можно заметить, что рентгеновский квант излучается не при каждом электронном переходе. Эффективной в этом отношении оказывается только часть переходов (/ij). Остальное число переходов п — () вызывает эмиссию электронов из внешних электронных оболочек атома, поскольку они воспринимают всю энергию, освобождающуюся при осуществлении внутренних электронных переходов, и вследствие этого отрываются от атома оже-эффект). Под выходом флуоресценции W понимают отношение /if/n. Величина W для различных оболочек не одинакова и возрастает с увеличением атомного номера элемента. Зависимость выхода флуоресценции для /С-оболочки от атомного номера элемента можно представить следующей полу эмпирической формулой  [c.201]


    Ключом к пониманию работы спектрометра с дисперсией по энергии служит то, что амплитуды импульсов, производимых детектором, в среднем пропорциональны энергии входящего рентгеновского кванта. Основной процесс детектирования, с помощью которого происходит пропорциональное преобразование энергии фотона в электрический сигнал, иллюстрируется на рис. 5.17. Невозмущенный 51 (Ь1)-кристалл обладает зонной структурой (описание зонной структуры дано в обсуждении катодолюминесценции в гл. 3), в которой состояния в зоне проводимости свободны, а состояния в валентной зоне заполнены. При захвате высокоэнергетического фотона электроны перебрасываются в зону проводимости, оставляя дырки в валентной зоне. При наличии напряжения смещения электроны и дырки разделяются и собираются электродами, расположенными на поверхностях кристалла. Захват фотонов осуществляется путем фотоэлектрического поглощения. Падающий рентгеновский фотон вначале поглощается атомом кремния и испускается высоко-энергетический электрон. Затем этот фотоэлектрон по мере того, как он движется в кремниевом детекторе и испытывает неупругое рассеяние, генерирует электронно-дырочные пары. Атом кремния остается в состоянии с высокой энергией, поскольку на испускание фотоэлектрона потребовалась не вся энергия рентгеновского кванта. Эта энергия впоследствии выделяется либо в виде оже-электрона, либо в виде кванта рентгеновского характеристического излучения кремния. Оже-электрон испытывает неупругое рассеяние и также создает электронно-дырочные пары. Кванты рентгеновского излучения кремния могут повторно поглощаться, инициируя процесс снова, или неупруго рассеяться. Таким образом, имеет место последовательность событий, в результате чего вся энергия первичного фотона остается в детекторе, если только излучение, генерируемое в одном из актов [c.213]

    Если осуществляется переход электрона с какой-то внешней электронной оболочки на вакансию внутренней оболочки, то при этом может происходить испускание кванта рентгеновского излучения. Это так называемая рентгеновская флуоресценция. Так, например, при А -захвате по схеме, показанной на рис. [c.138]

    Рентгеновское излучение возникает за счет квантовых переходов внутренних электронов атомов. Последнее становится возможным в результате облучения вещества потоком электронов высокой энергии или жесткими рентгеновскими лучами, при котором происходит вырывание электронов из внутренних электронных слоев. На освободившиеся орбитали переходят электроны из более далеких от ядра слоев (рис. 85), что и сопровождается выделением квантов рентгеновского излучения. [c.141]


    При переходе периферийного электрона на освободившееся в К-слое место выделяется энергия в виде кванта рентгеновского излучения. [c.49]

    При поглощении веществом кванта рентгеновского излучения (длина волны 0,1—20 А) или - -кванта (длина волны 10 — 10" А) образуются частицы с огромным избытком энергии, превосходящим энергию химических связей в сотни и тысячи раз. Эта энергия расходуется в основном на ионизацию молекул вещества и на возбуждение их внешних электронных оболочек. В результате поглощения одного кванта ионизирующего излучения образуется большое число пар ионов и возбужденных молекул. Как те, так и другие претерпевают разнообразные превращения, в частности, превращения, приводящие к разрыву химических связей и образованию свободных радикалов и атомов. [c.20]

    Закон, связывающий частоту спектральных рентгеновских линий характеристического излучения С порядковым номером элементов (2), был открыт Г. Мозли (1913) и формулируется следующим образом квадратный корень из частот ) или (сД) соответствующих характеристических линий является линейной функцией порядкового номера элементов. Это означает, что если за счет энергии, поступившей извне (например, за счет мощной электронной бомбардировки), выбит электрон из атома с самой близкой к ядру орбитали (п=1), то на освободившееся место может перейти электрон со 2-й, 3-й, 4-й и т. д. орбиталей, в результате чего получается (высвечивается) квант рентгеновского излучения Е =к 2, " =/ivз, "л = /1г Спектр полученного излучения назван (-серией. Зависимость /(-серии от заряда I представлена на рис. 5.2. [c.114]

    Попадающие на кристалл быстрые электроны выбивают электроны из внутренних оболочек атомов, на освободившиеся орбитали переходят электроны из вышележащих уровней это сопровождается испусканием квантов рентгеновского излучения. Так, в металлическом натрии на освободившееся место в оболочке 2р может провалиться  [c.273]

    При распаде одного ядра атома данного изотопа может испускаться только одна а- или р-частица и несколько -квантов, несколько электронов конверсии и квантов рентгеновского излучения. Эго необходимо учитывать при определении количества распавшихся ядер по зарегистрированному числу у-квантов. [c.319]

    Основным процессом поглощения рентгеновского излучения в диапазоне рабочих энергий, представляющих интерес для микроанализа (1—20 кэВ), является фотоэлектрический эффект. В этом случае энергия кванта рентгеновского излучения полностью передается связанному электрону внутренних оболочек атома, в результате чего происходит испускание электрона (называемого фотоэлектроном) и аннигиляция фотона. Может также происходить неупругое рассеяние рентгеновского излучения, в результате которого происходит изменение энергии за счет эффекта Комптона, при котором рентгеновское излучение взаимодействует со свободным электроном. Для диапазона энергий, представляющего для нас интерес, сечение или вероятность эффекта Комптона настолько мала по сравнению с процессом фотоэлектронной эмиссии, что им можно спокойно пренебречь. Тогда поглощение рентгеновского излучения может рассматриваться исключительно как фотоэлектрический процесс. Для отдельного кванта поглощение является процессом все или ничего , т. е, либо из мишени испускается квант с неизменной энергией, либо он полностью поглощается. Этот факт особенно важен для проводящего анализ исследователя, который регистрирует характеристическое рентгеновское излучение определенной энергии для идентификации поэлементного состава образца. [c.86]

    Положение линий. Облучая атомы квантами рентгеновского излучения достаточной энергии, можно вызвать переходы электронов с внутренних, более близких к ядру орбит, сопровождающиеся появлением вакансий. При последующем переходе электронов с более удаленных орбит на образовавшиеся вакантные разность энергий соответствующих уровней А будет излучаться в виде кванта рентгеновского излучения. В рентгеновском спектре этот квант можно зарегистрировать по появлению соответствующей линии. Для этого энергетического перехода справедливо соотношение [c.200]

    При прохождении излучения через пробу наряду с поглощением происходит его небольшое когерентное рассеяние (т. е. без изменения длины волны). Помимо этого, часть квантов рентгеновского излучения упруго рассеивается на слабо связанных электронах (эффект Комптона или некогерентное рассеяние). Вследствие потерь энергии комптоновское излучение по сравнению с первичным характеризуется большей длиной волны. [c.202]

    Кванты рентгеновского излучения обладают меньшей энергией, чем 7-кванты. Основные процессы, происходящие при взаимодействии рентгеновского излучения с веществом, — фотоэффект и комптоновский эффект. Массовый коэффициент поглощения резко возрастает с увеличением заряда) ядра атома элемента (вероятность фотоэффекта пропорциональна 2 ), т. е. анализ следует проводить в области таких энергий рентгеновского излучения, в которой наблюдается значительное различие коэффициентов погло- [c.322]

    Рентгеновские спектры обусловлены переходами электронов внутр. оболочек атомов. Различают тормозное и характеристич. рентгеновское излучение. Первое возникает при торможении заряженных частиц (электронов), бомбардирующих мишень в рентгеновских трубках, и имеет сплошной спектр. Характеристич. излучение испускают атомы мишени при столкновении с электронами (первичное излучение) или с рентгеновскими фотонами (вторичное, или флуоресцентное, излучение). В результате этих столкновений с одной из внутр. К-, L- или М-) оболочек атома вылетает электрон и образуется вакансия, к-рую заполняет электрон с другой (внутр. или внеш.) оболочки. При этом атом испускает квант рентгеновского излучения. [c.239]


    Захват К- или -электрона вызывает последующую перестройку всей электронной оболочки атома н сопровождается испусканием кванта рентгеновских лучей. [c.381]

    Световой квант был назван А. Эйнштейном фотоном, и, следовательно, уравнения e = ftv или е=йо) выражают энергию фотона. Таким образом, намечается некоторый синтез волновых и корпус-К лярных идей и вместе с тем обнаруживается тот удивительный дуализм объектов микромира, который не имеет практических аналогий в макромире. Фотон характеризуется волновыми свойствами (частотой), но в то же время он имеет и признаки частицы. Подтверждение этому было получено в 1922 г. в опытах Комптона, исследовавшего взаимодействие квантов рентгеновского излучения (фотонов) с электроном. При столкновении фотона с электроном оба они ведут себя как частицы и их траектории можно рассчитать по законам механики. [c.27]

    Однако наиболее общий и простой метод определения зарядов ядер был дан Мозли на основе изучения спектров рентгеновских лучей. Рентгеновские волны обладают меньшей длиной волны по сравнению с видимым светом, большей частотой и, следовательно, их кванты обладают большей энергией. Они возникают в результате переходов электронов внутренних оболочек атомов. Эти электроны крепче связаны и находятся, следовательно, на более низких энергетических уровнях. Рентгеновское излучение обычно вызывается воздействием на вещество потока электронов, которые выбивают внутренние электроны атомов. На освободившиеся места приходят электроны, находящиеся на более высоких энергетических уровнях. При этом выделяются кванты рентгеновского излучения. [c.578]

    Если один из двух уровней, скажем 2 принадлежит непрерывной области энергии, соответствующей диссоциации или ионизации, то все уровни из системы Е , расположенные вблизи уровня Ей могут его возмущать. При этом некоторые уровни будут сдвигать его вверх, другие — вниз. В результате вместо уровня Ei будет слегка диффузный уровень, как это показано на рис. 102, б. Смешивание волновых функций этих двух состояний означает, что если система переводится в состояние 1, то она очень скоро приобретает свойства состояния Яг, т. е. произойдет диссоциация или ионизация. Приблизительно ситуацию можно передать словами, что происходит безызлучательный переход из дискретного состояния в непрерывное (с той же энергией), что приводит к распаду молекулы. Такие процессы носят название процессов Оже по имени исследователя, впервые открывшего это явление в рентгеновской области. Он обнаружил, что один квант рентгеновского излучения может вызвать испускание двух фотоэлектронов. При этом один из них испускается в результате обычного фотоэффекта например, с /С-оболочки), а другой — сразу же за первым вследствие такого безызлучательного перехода (поскольку Х-уровень, на который атом переходит после первой стадии, перекрывается непрерывной областью энергии, соответствующей удалению электрона с -оболочки образовавшегося иона). [c.179]

    В результате электронного возбуждения внутренних уровней образуются ионы в возбужденном состоянии, поскольку на внутренней орбитали возникает вакансия. Ионизированный атом, следовательно, немедленно переходит (в течение 10 -10 с) в состояние с меньшей энергией посредством перехода электрона с верхнего (более низкая Есв) на нижний уровень (более высокая Есв). Энергия, соответствующая разности энергий между этими уровнями АЕ = св(1) Есв(-2), испускается в виде либо кванта рентгеновского излуче- [c.330]

    Метод рентгеноэлектронной (фотоэлектронной) спектроскопии позволяет определить значения эффективных зарядов на атомах в молекуле. Сущность метода состоит в облучении молекул жесткими квантами света. При этом происходит ионизация связанных в молекуле атомов за счет удаления глубинных электронов (например, Ь и т. д.). Энергия жесткого кванта рентгеновского или УФ-излучения расходуется на ионизацию связанного атома (энергия ионизации Е) и кинетическую энергию выбитого электрона, равную > /иу т. е.  [c.131]

    В рентгеновских трубках в энергию излучения преобразуется небольшая часть энергии пучка (0,15% при /а=20 кВ и 10% при Иа = 2 МВ), а основная часть кинетической энергии электронов преобразуется в тепловую на аноде, причем область, куда попадают электроны, мала по размерам, что делает режим работы мишени весьма напряженным. Величина анодного напряжения определяет интенсивность и спектральный состав рентгеновского излучения. Интенсивность излучения, кроме того, прямо пропорциональна анодному току. Главной причиной, ограничивающей интенсивность излучения, величину энергии квантов рентгеновского излучения и минимальный размер фокусного пятна (область, из которого идет излучение), является сильный локальный и общий нагрев мишени анода, что может привести к их разрушению или расплавлению. Для повышения анодного напряжения и тока трубки принимают различные конструкции анодов (полый, вращающийся и др.) [c.286]

    Тормозное излучение однозначно связано с напряжением С/а и имеет непрерывный спектр, а характеристическое получается при превышении определенного Уа и определяется физическими параметрами материала мишени. Энергия кванта рентгеновского излучения с минимальной длиной волны >.0 при- [c.289]

    Диаметр мишени, мм Толщина мишени, м-км Диапазон рабочих интенсивностей, Р/мин Знергия квантов рентгеновского излучения, кэВ Разрешающая способность (по мишени), мкм Контрастная чувствительность, % [c.307]

    ФОТОН — элементарная частица с массой покоя, равной нулю, вследствие чего Ф. всегда движется со скоростью света. Спнн Ф. равен 1. Ф. представляет собой порцию электромагнитного излучения, например, видимого света, рентгеновского или -излучения. Ф. называют также квантами — световыми квантами, рентгеновскими квантами или у-квантами. Ф. могут испускаться или поглощаться любой системой, содержащей электрические заряды или по которой проходит ток. Ф. с высокой энергией (7-кванты) испускаются при распадах атомных ядер и элементарных частиц, и могут вызывать расщепление атомных ядер и образование элементарных частиц. Понятие Ф. введено в 1899 г. М. Планком для объяснения распределения энергии в спектре излучения абсолютно черного тела. Существование Ф. означает, что электромагнитные волны с частотой V излучаются и поглощаются только определенными порциями (квантами) с энергией, равной hv (где /г — постоянная Планка). [c.268]

    Счетчики квантов рентгеновского излучения. К наиболее употребительным счетчикам квантов рентгеновского излучения относятся ионизацио((ные и сцин-тилляциониые счетчики. Принцип работы ионизационных счетчиков, к которым относится, в частности, счетчик Гейгера — Мюллера, основан иа способности рентгеновского излучения ионизировать газы, а сцинтилляционных — на способности рентгеновского излучения вызывать люминесцентное свечение некоторых веществ в виде всрышек — сцинтилляций видимого света. Преимуществом сцинтилляционных счетчиков перед ионизационными является высокая эффективность (процентное отношение числа зарегистрированных квантов к числу всех квантов, попавших во входное окно счетчика) при регистрации жесткого рентгеновского излучения, малое мертвое время (время, в течение которого счетчик, зарегистрировав квант, остается нечувствительным к следующему кванту) и практически неограниченный срок службы при хорошей герметизации кристалла — сцинтиллятора. В табл. 10 приведены некоторые характеристики серийно выпускаемых счетчиков. [c.77]

    Газонаполненный ионизационный счетчик в принципе является пропорциональным счетчиком. Каждый квант рентгеновской радиации ионизирует газ, заполняющий детектор счетчика. Вследствие этого между двумя электродами с приложенной разностью потенциалов 10 В вызывается лавинообразный разряд. Для уменьшения потерь излучения входное окно счетчика закрывают пленкой тонкого полипропилена. Ввиду того что в счетчик постоянно диффундируют небольшие количества газов, его следует длительное время продувать аргоном. Аргон предпочитают ввиду его малой алсорбируемости и относительно высокого ионизационного потенциала. Вследствие слабого поглощения радиации материалом входного окна пропорциональный счетчик предпочитают использовать при определении легких элементов (Na/ a—Са Ка и SnLa—Tala)- [c.206]

    Экспериментальное осуществление-ФЭ- и РЭ-спектроскопии довольно несложно. На рис. 86 показана схема установки для РЭ-сиектроскоиии (РЭ-сиектрометр). Рентгеновские кванты Нл- из анода рентгеновской трубки 1 попадают на исследуемый образец 2, выбивая электроны от атомов, входящих в состав образца. Разложение электронов в спектр и фокусировка их по энергиям кин производится с помощью магнитного или электростатического поля сферического конденсатора 3. При некоторой напряженности поля электроны, имеющие определенную кинетическую энергию, отклоняются по дуге и попадают в счетчик. Последний сортирует испускаемые веществом электроны по их кинетическим энергиям Енин- Таким образом, зная энергию источника облучения (монохроматическое рентгеновское излучение с энергией Ьу) и экспериментально определяя кин, легко найти Есв по (VI. 13). В ФЭ-спектрометре вместо источника рентгеновских квантов (рентгеновская трубка) применяется источник монохроматического ультрафиолетового излучения. [c.184]

    Как и при позитронном распаде, электронный захват не сопровождается изменением массового числа, а у дочернего элемента заряд ядра понижается на единицу. Вновь образующийся элемент расположен в Периодической системе на одну клетку левее по сравнению с исходным. Наиболее распространен захват электрона из ближайшей к ядру /С-оболочки, реже встречается захват из Ь- и более дальних оболочек. Соответственно обозначению электронной оболочки захват называют /С-захватом, --захватом и п. Оставшееся свободное место на соответствующих оболочках ганимает другой электрон, перескакивающий с более высокого энергетического уровня. Перескок сопровождается испусканием кванта рентгеновского излучения. При переходах на /С-слой возникают рентгеновские излучения /С-серии и т. д. Этот процесс часто бывает единственным наблюдаемым эффектом происшедшего захвата электрона. [c.399]

    ТЕРМ0Л10МИНЕСЦЁНЦИЯ, люминесцентное свечение в-ва, возникающее в процессе его нагревания. Обычно для появления Т. в-во необходимо предварительно возбудить УФ светом, ионизирующим излучением (у-квантами, рентгеновскими лучами, потоком электронов электрич. полем, мех. воздействием. В нек-рых случаях Т. связана с образованием электронно-возбужденных состояний молекул в хим. р-цнях (см. Хемилюминесценция). Термолюминесцируют неорг. в-ва, в т. ч. люминофоры разл. назначения (ламповые, телевизионные и пр.), лазерные кристаллы (напр., рубин, полупроводниковые кристаллы), стекла, мн. полимеры (полистирол, полиамиды, полиэтилентерефталат, полиолефины, фтор- и хлорсодержащие полимеры, все каучуки и др.). [c.542]

    Когда пучок рентгеновских лучей попадает на поверхность кристалла, кванты рентгеновского излучения взаимодействуют (поглощаются и испускаются) с и L-электропами атомов. (Здесь предполагается некоторое знакомство с материалом, систематически изложенным в гл. IV и V). Подчеркнем, что интерференция связана не со свойствами внешних электронов, от которых зависят химические свойства изучаемых атомов, а с Z- и -электронами, расположенными во внутренних оболочках атомов. Другими словами, такое облучение не изменяет никаких свойств атомов, которые влияют на их химическое поведение. Некоторые кванты излучения проникнут в глубь кристалла и отразятся электронами атомов, расположенных во внутренних слоях решетки. Поэтому в отраженном луче окажутся волны, различающиеся по фазе, что приведет к интерференции отраженных волн. В этом и состоит отличие отражения рентгеновских лучей от отражения видимого света, происходящего только на внешней поверхности кристалла. Как и в картине, данной Гюйгенсом, каждый атом в кристалле можно принять за новый источник излучения, испускающий свет по всем паправлениям. Поэтому должны существовать паправлепия, по которым интерференции не иро-псходит. [c.26]

    При рассмотрении вопроса об отражении рентгеновских лучей от поверхности кристаллов (стр. 26) предполагалось, что длины волн отраженных лучей совпадают с исходными. Однако Комитон [32], изучая рассеяние рентгеновских лучей твердыми телами, нашел, что в отраженном луче появляется излучение с длинами воли, большими чем в падающем пучке. Это явление, необъяснимое с точки зрения волновой теории света, было вскоре объяснено самим Комптоном с помощью квантовой теории. Поскольку энергия кванта рентгеновского излучения (/гv) очень велика по сравнению с энергией связи электрона в рассеивающем твердом теле, эффект Комптона обычно рассматривается как явление соударения падающих фотонов и свободных электронов. Электрон, рассеивающий рентгеновское излучение, получает энергию отдачи , достаточную для его вылета из твердого тела. [c.126]

    Природа взаимодействия сталь различашихся по анергии квантов с веществом принципиально неодинакова. Так возникновение У - квантов связано с ядерными процессами, излучение квантов рентгеновского аз-луче.чин обусловлено электронными переходами во внутренних квантовых слоях, испускание квантов УФ и видимого излучения или взаимодействие вещества с ними - сфера оптических методов анализа - следствие электронных переходов внешних, валентных электронов, поглощение ИК и микро- [c.5]

    Получение количественной информации о рассеянии ориентации кристаллитов рентгеновским методом можно осуществить регистрированием дифрапфованных лу ей счетчиком квантов рентгеновского лзлучения. С помощью рентгеновских дифрактометров можно подучить [c.104]

    Взаимодействуя с электронами разных оболочек, квант рентгеновского излучения может изменить свое направление движения. При этом возможны два случая либо фотон при столкновении с атомом полностью сохраняет свою энергию, либо передает часть своей энергии одному из электронов атома. В первом случае длина волны рассеянного излучения не изменяется, а во втором — несколько возрастает. Первый вид рассеяния называется когерентным или томпсоновским рассеянием, второй — некогерентным или комптонов-ским рассеянием [c.7]

    Дифрагированное от кристалла излучение попадает в детектор, преобразующий кванты рентгеновского излучения в электрические импульсы, амплитуда которых пропорциональна энергии квантов. После усиления и амплитудной селекции, позволяющей исключить компоненты фона, обусловленные высшими порядками дифракции и рассеянием постороннего излучения, импульсы поступают в пересчетное устройство, регистрирующее их количество за время экспозиции. Количество зарегистрированных импульсов может быть выведено на табло, цифропечать или передано в ЭВМ для последующей обработки и расчета концентраций определяемых элементов. [c.11]

    Рентгеновский спектр — это распределение интенсивности рентгеновского излучения, испущенного образцом (РЭА, РФА) или прошедшего через образец (РАА), по энергиям (ипи длинам волн). Как правило, рентгеновский спектр содержит небольшое число спекгральных линий (эмиссионный спектр) ипи скачков поглощения (абсорбционный спектр). На рис. 11.29 и 11.30 изображены соответственно рентгенофлуоресцентный спектр металлического сплава и фрагмент рентгеноабсорбционного спектра вблизи края поглощения для произвольного материала. Фоновый сигнал эмиссионного рентгеновского спектра формируют кванты рентгеновского излучения, неупруго рассеянные на электронах атомов твердого тела. Рентгеновская эмиссия возникает при электронных переходах между внутренними (остовными) уровнями атомов. Относительная простота  [c.251]

    Ввиду низкой энергии у-квантов рентгеновских источников излучения и радионуклидных источников предел толщины просвечиваемых деталей офаничен, так как при их использовании нерационально возрастает время просвечивания. [c.50]


Смотреть страницы где упоминается термин Квант рентгеновского: [c.137]    [c.75]    [c.455]    [c.149]    [c.170]    [c.206]    [c.180]    [c.26]    [c.348]    [c.261]    [c.84]   
Люминесцентный анализ (1961) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Квант

Квантованная АИМ



© 2025 chem21.info Реклама на сайте