Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время в каталитическом процессе

    До первой мировой войны фталевый ангидрид получали из нафталина путем окисления его серной кислотой в присутствии ртутного катализатора. Во время первой мировой войны почти одновременно в Германии и в США [3, 14, 15] был открыт каталитический процесс окисления воздухом в паровой фазе,- что привело к снижению стоимости производства фталевого ангидрида и к значительному увеличению потребления его. В 1945 г. [2,6] этот процесс был использован в промышленных масштабах Для окисления о-ксилола. [c.8]


    В настоящее время каталитические процессы широко используются в промышленности. Сейчас даже трудно назвать крупное производство химической промышленности, где бы не применялись катализаторы. Получение спиртов, альдегидов, аммиака, серной и азотной кислот, переработка каменного угля в жидкое топливо, процессы крекинга нефти при получении моторных топлив, синтез каучука, производство пластмасс, красителей, получение маргарина и других пищевых продуктов — вот далеко не полный перечень процессов, где широко используются катализаторы. В ряде случаев за счет применения катализаторов удается значительно снизить температуру проведения реакции, что позволяет уменьшать тепловые затраты и использовать менее жаростойкую аппаратуру, а также устранять нежелательные побочные реакции. [c.161]

    Более сложен процесс диспергирования металла на поверхности носителя. Для увеличения поверхности металла и сохранения мелких частиц во время каталитического процесса применяют специальные приемы, например введение добавок, препятствующих агрегированию частиц [79]. [c.31]

    Действие света на твердое вещество не всегда ведет к фотохимической реакции. Часто освещенные тела не обнаруживают химических изменений, но действуют как источник эмиссии электронов. Так называемый фотоэлектрический процесс может иметь место под действием ультрафиолетового света, в результате чего происходит освобождение электронов. При некоторых каталитических реакциях эти свободные фотоэлектроны могут сообщать каталитическую активность и тогда каталитические реакции, в которых участвует свет, следует относить к фотоэлектрическим процессам. Механизм разложения перекиси водорода на платине, подвергаемой ультрафиолетовой радиации, был списан Ройтером следующим образом. Во время каталитического процесса электронные токи идут от неактивных участков платины к активным центрам, последние играют роль носителя для электронов и переносят их от молекул перекиси водорода, находящихся в неактивном поле, к молекулам, которые удерживаются неактивных центрах. У очень слабых или очень сильных катализаторов радиация может замедлять процесс, затрудняя передачу электронов, например, моле кулами перекиси водорода поверхности платины в других случаях радиация повышает активность каталитического агента. [c.73]


    При 350° С и нормальном давлении активная новерхность во время каталитического процесса почти полностью покрыта адсорбированной водой. Половина активной поверхности становится способной адсорбировать диол только после того, как общее давление снизится приблизительно до 20 мм рт. ст. Если поверхность находится в равновесии с образующейся водой в газовой фазе, то водой может быть покрыто менее 0,2 всей новерхности. Однако часть общей поверхности, активной но отношению к дегидратации диола, довольно велика, на что указывает значительное уменьшение доступной поверхности, наблюдаемое при измерении изотерм адсорбции диола [283]. Авторами сделан вывод, что во время каталитической реакции концентрация воды на поверхности приблизительно в 100 раз превышает равновесную концентрацию. [c.152]

    Не исключена также возможность разработки нового высокотемпературного процесса связывания атмосферного азота с образованием двуокиси азота, последующим гидролизом которой можно получать азотную кислоту. В этом случае для производства азотной кислоты уже не потребуется аммиак. Цианистый водород, вырабатываемый к настоящее время каталитическим процессом из аммиака, метана и природного газа, теоретически можно получать с высокими выходами при помощи еще не открытого высокотемпературного процесса. [c.298]

    Комплекс хроматографических методов в этом отношении находится в. особо выгодном положении. Прежде всего это наиболее современный, быстрый и эффективный метод определения основных адсорбционных характеристик. К тому же хроматография в принципе позволяет измерять адсорбцию во время каталитического процесса. Как будет показано ниже,, хроматография применима к изучению как катализаторов, так и каталитических процессов и, кроме того, к изучению ряда вспомогательных характеристик. [c.15]

    Во время каталитических процессов измеряли также сопротивление пленок. Оказалось, что иа Р1, Р(1, N1 и КЬ сопротивление во время реакции ииже чем для общ) но всегда выше, чем при полной адсорбции водорода. [c.89]

    Во время каталитического процесса V-P-оксидные катализаторы претерпевают существенные изменения. Фазы, рентгенографически и спектроскопически обнаруживаемые в составе катализаторов на разных стадиях их эксплуатации, приведены ниже [169]  [c.158]

    Последние две группы процессов подробно рассмотрены в главе тринадцатой. Сравнительно полное превращение сероокиси углерода, сероуглерода и меркаптанов, по-видимому, осуществимо при помощи всех этих методов, хотя обычно для этого требуется несколько ступеней каталитической очистки. Ни один известный в настоящее время каталитический процесс не позволяет достигнуть полного превращения тиофенов. Ряд промышленных установок, обеспечивающих получение газа с различной глубиной очистки от органической серы методами каталитического превращения, эксплуатируется в настоящее время в Европе и США. [c.199]

    Степанов, Марголис и Рогинский [371] исследовали подвижность ионов хлора, иода и серы, введенных в серебряный катализатор, изотопными методами во время каталитического процесса. На поверхности серебра протекает реакция восстановления этих ионов под влиянием газовой среды — этилена, водорода и др. —с образованием, например, в случае хлора хлористого водорода и уменьшением концентрации добавки в металле. Такое изменение содержания примеси во время процесса оказывает невыгодное влияние на величину каталитической активности и избирательности процесса. Поэтому метод введения добавок в твердое тело следует заменить более совершенным способом — газовым модифицированием. [c.224]

    Ниже описан ряд каталитических процессов, имеющих важное промышленное значение. При этом приведены известные составы катализаторов, рабочие температуры и давления, кинетические уравнения или время контактирования и объемная скорость оправдавших себя катализаторов. Указанные данные позволяют оценить порядок величины размеров реактора для рассмотренных процессов. Однако объемная скорость может сильно меняться в зависимости от продолжительности работы и даже небольших изменений состава катализатора, а также от требующегося общего выхода и степени превращения за один проход. Объемная скорость измеряется или в Л1 газа [приведенного к нормальным условиям (О С и 760 мм рт. ст.)], проходящего через 1 ж катализатора за 1 ч, или в кг газа, проходящего через 1 кг катализатора за 1 ч. [c.323]

    Несмотря на большое число работ по модифицирующему действию примесей, совершенно отсутствуют сведения о поведении модифицирующих добавок во время каталитического процесса. [c.255]

    С начала возникновения идо середины XX века основным назначением этого "знаменитого" в свое время процесса было получение из тяжелых нефтяных остатков дополнительного количества бензинов, обладающих, по сравнению с прямогон — ными, повышенной детонационной стойкостью (60 — 65 пунктов по ОЧММ), но низкой химической стабильностью. В связи с внедрением и развитием более эффективных каталитических процессов, таких, как каталитический крекинг, каталитический риформинг, алкилирование и др., процесс термического крекинга остаточного сырья как бензинопроизводящий ныне утратил свое промышленное значение. В настоящее время термический крекинг применяется преимущественно как про — цесс термоподготовки дистиллятных видов сырья для установок коксования и производства термогазойля. Применительно к тяжелым нефтяным остаткам промышленное значение в со— временной нефтепереработке имеет лишь разновидность этого [c.7]


    Все сказанное выше о влиянии условий ведения процесса на выход отдельных продуктов реакции справедливо для некаталитического окисления парафиновых углеводородов в газовой фазе. Но в то же время существует процесс каталитического окисления бутана в жидкой фазе в присутствии растворителя, например уксусной кислоты, и катализаторов, как ацетат никеля, кобальта и марганца. [c.151]

    Диффузия молекул к поверхности и от поверхности твердого катализатора обычно происходит быстро в газах и медленно в жидкостях. Поэтому для последних суммарная скорость реакции сильно зависит от размеров пор и доступности катализатора. При этом может оказаться, что реакция лимитируется диффузией (т. е. стадиями 1 и 5). Для газов этот случай является редким. На время ограничимся рассмотрением таких каталитических процессов, скорости которых определяются стадиями 2, 3 и 4. Предложены две модели строения сорбированного слоя реагентов па поверхности. Одна из них исходит из того, что сорбированный слой слабо связан с поверхностью и относительно свободно может мигрировать с одного места поверхности к другому. В предельном случае подвижный слои может быть представлен как двухмерный газ, сорбированный на поверхности. Наряду с этой моделью существует и модель сильной связи поверхностного слоя согласно такой модели, можно считать, что каждая сорбированная молекула образует химическую связь с некоторым атомом на поверхности катализатора. В таком локализованном слое миграция реагирующих веществ может медленно проходить либо за счет диффузии на иоверхности, либо за счет испарения и повторной адсорбции. Эти относительно медленные процессы могут лимитировать скорость реакции. [c.536]

    Динамического и химического подобия обычно нельзя достигнуть одновременно например, если остается постоянным время реакции, то число Рейнольдса, в которое входит линейная или массовая скорость, изменяется. В гетерогенных каталитических процессах полное подобие может быть достигнуто при изменении размера частиц катализатора и его активности. Если теплопередача осуществляется теплопроводностью или конвекцией, размер частиц должен быть пропорционален диаметру сосуда, а активность катализатора должна меняться обратно пропорционально квадрату диаметра реактора оба условия очень тяжелы и обычно невыполнимы. Часто имеют значение только некоторые из факторов, влияющих на реакцию, так что существенным будет равенство только тех безразмерных комплексов, в которые они входят. Например, если скоростью диффузии определяется процесс в гетерогенном реакторе, то рассмотрение одного динамического подобия будет достаточным для выяснения условий моделирования. [c.341]

    Максимальный выход SO3 для данного времени соприкосновения газа с катализатором получается при определенной оптимальной температуре. Чем меньше время соприкосновения т (и соответственно JisOa), тем выше оптимальная температура (см. ч. 1, рис. 98). Таким образом, в контактных аппаратах для достижения максимальной скорости процесса следовало бы начинать его прн возможно более высоких температурах, около 600°С, проводить по кривой оптимальных температур и заканчивать при 400°С. Для этого необходим предварительный подогрев газа и непрерывный отвод теплоты по ходу каталитического процесса. Этой задаче и подчинены в основном конструкции современных контактных аппаратов, однако решается она далеко не полностью. Свежий газ, содержащий SO2, подогревается за счет теплоты прореагировавшего газа (теплоты реакции) лишь до температуры зажигания (420—470°С), а затем во время каталитического процесса температура сначала возрастает до бОО С, а затем производится понижение ее. [c.131]

    Клеточный метаболизм находится под контролем ферментов, а ферментам для проявления каталитической активности, как правило, необходимо особое вещество, или кофактор. В таких системах белковая часть фермента называется апоферментом, и она обычно неактивна. Кофактор — это или пон металла, или органическое вещество небелковой природы. Многие ферменты даже требуют присутствия обоих кофакторов. Прочно связанный кофактор называется простетической группой. Однако если органический кофактор начинает действовать только во время каталитического процесса, то он называется коферментом. Комплекс, образующийся в результате присоединения кофермента к апофер-менту, называется холоферментом (или, для краткости, ферментом).  [c.398]

    Степанов, Марголис и Рогинский [284] исследовали подвижность ионов хлора, йода и серы, введенных в серебряный катализатор изотопными методами во время каталитического процесса. На поверхности серебра протекает реакция восстановления этих ионов под влиянием газовой среды ( этилен, водород и др.) с образованием, нанрпмер, в случае хлора хлористого водорода и уменьшением [c.187]

    Обычно окислы металлов получают разложением солей (например, карбоната медп в окись меди). При этом окисел металла образуется на поверхности зерна исходной соли, и зона реакцип СпСОд —> СпО -Ь -Ь СОа передвигается вглубь (центростремительная реакция). Скорость разложения возрастает с уменьшением давления углекислого газа, т. е. с увеличением расстояния от равновесия. Разложение соли в вакууме иозволяет получать окисел металла с большой поверхностью. Если реакция экзотермическая, то чем ниже температура разложения соли, тем активнее катализатор. Поверхность окиси цинка, полученная разложением карбоната цинка при атмосферном давлении и температурах 400—500°, составляет 8—10 а в вакууме (10 мм рт,. ст.) при 250° достигает 200—300 /г. Однако во время каталитического процесса часто не удается сохранить высокую активность контакта. [c.231]

    При стадш1ных схемах с переходами электронов моя но ожидать корреляции окислительно-восстановительных каталитических свойств твердых тел с работой выхода электронов (ф). Из-за большой чувствительности последней величины к ряду факторов и трудности ее измерения во время каталитического процесса проверить правильность этого вывода в общем вгще трудно. В ряде случаев можно считать доказанным наличие четкого соответствия между изменением активности катализаторов при простых реакциях или селективностью действия при сложных реакциях, с одной стороны, и изменением работы выхода при введении нелетучих или труднолетучих добавок — с другой [38]. Как было отмечено ранее [39], такой корреляции следует ожидать при различиях в заряженности исходных веществ и переходного комплекса реакции так как работа заряжения входит в свободную энергию образования комплекса. Таким образом удается объяснить влияние ряда нновалентных добавок на скорость окисления СО на МпОз и N 0 и влияние добавок щелочных и щелочноземельных металлов на активность железа в синтезе аммиака. При действии любого фактора, вызывающего заряжение поверхности, такой электростатический механизм способен приводить как к росту, так и к падению активности, и при этом не только у полупроводниковых, но и у металлических контактов, в зависимости от знака заряда переходного комплекса. [c.29]

    В настоящее время каталитические процессы, связандые с переработкой нефти, находят широкое практическое применение в Советском Союзе. Так, в контрольных цифрах развития народного хозяйства на 1959—1965 гг. предусмотрено увеличение мощностей каталитического риформинга в 16-— 18 раз. Намечено дальнейшее развитие процесса каталитк-ческого крекинга на алюмосиликатах. [c.3]

    Все формы, о которых до сих пор шла речь, на поверхности относительно стабильны, иначе их нельзя было бы наблюдать при существующей ограниченной чувствительности применяемых методов. Для каталитического процесса эти двумерные соединения могут быть исходными поверхностными реагентами, конечными, побочными или промежуточными поверхностными продуктами реакции, а также каталитическими ядами, модификаторами или посторонними безразличными веществами. Уточнение их места и роли в каталитическом процессе особенно важно для развития теории сложных процессов. Для этой цели требуются специальные методы исследования генетических взаимоотношений, существующих между различными обнаруживаемыми веществами, степени обратимости отдельных частных процессов и, наконец, адсорбциош)ых равновесий во время каталитического процесса. [c.21]

    Г. К. Боресков поднял вопрос о том, стоит ли вообще изучать неоднородность новерхности свежеактивированных катализаторов, поскольку активная поверхность сильно изменяется во время каталитического процесса. Мне кажется, что изучать активную поверхность катализатора следует на всех стадиях ее изменения, начиная от активации и кончая регенерацией. Для некоторых систем такое исследовапие пами произведено. [c.239]

    Основными продуктами реакции при окислении пропилена на УгОб являются насыщенные альдегиды (ацетальдегйд и формальдегид), ненасыщенный альдегид (акролеин), кислоты (уксусная и муравьиная), а также продукты глубокого окисления (СОг и НгО). Кроме того, в газе всегда присутствует окись углерода (почти в равных количествах с СОг). На УгОб реакция окисления СО в СОг протекает с достаточной скоростью только при температурах 455—500° С. Во время каталитического Процесса УгОб частично превращается в У204,з4, на котором скорость окисления СО в СОг увеличивается. Степень заполнения кислородом поверхности УгОб невелика. Согласно описанной выше стадийной схеме [c.151]

    Катализаторы бывают положительные и отрицательные первые увеличивают скорость реакции, вторые уменьшают ее. Катализаторы для той или иной реакции подбирают главным образом экспериментальным путем. Иа скорость реакции сильное влияние оказывает природа самого катализатора, его структура, всевозможные добавки к нему (активаторы) и т. д., т. е. сам катализатор обусловливает очень многие факторы, ускоряющие или замедляющие данную реакцию. Кроме того, состав реагирурощих веществ, посторонние примеси в них и т. п. также сильно влияют на каталитическую способность данного катализатора. Несмотря на то, что за последние годы в области катализа достигнуты значительные успехи, современные теоретические представления о катализе в настоящее время еще не являются основой для создания общей методики техно-химических расчетов каталитических процессов промышленных установок. [c.230]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    По образному определению Ф. Ф. Волькенштейна, изложенному в предисловии к монографии Мсуррисона [205], в которой дан подробный обзор современных взглядов на физику и химию явлений, протекающих на поверхности твердого тела в контакте с газовой или жидкой фазой, поверхность твердого тела представляет собой арену, на которой разыгрываются адсорбционные и каталитические процессы . При адсорбции инородный атом или молекула ионизируются, в то время как противоположно заряженные ионы могут находиться от места нх адсорбции на расстоянии в несколько сотых микрометра. По этой причине обобществление их электронов, как это было бы при ковалентной связи, становится невозможным. Такой тип связи именуют ионосорбцией. Ее иллюстрация на примере связывания кислорода приведена ниже, где для сравнения показана также ковалентная связь  [c.182]

    Изомеризация олефинов обещала играть довольно существенную роль п деле улучшения октановых чисел бензинов, получаемых из синтез-газа, однако производство бензина из синтез-газа не приобрело особого значения, а широкое распространение в последние годы установок каталитического крекинга снизило интерес промышленности к изомеризации олефинов. При каталитическом крекинге изомеризация происходит при нормальном режиме процесса [27], а октановое число бензина термического крекинга при каталитической изомеризации улучшается весьма мало — на 3—4 единицы. При разработке этих и других промышленных процессов была выполнена большая научная работа хотя в настоящее время каталитический крекинг можот служить источником изобутилена и давать ого даже в большем количестве, чем этого требует производство полимеров изобутилена и бутилового каучука, тем не менее выполненная за последнее время работа по изомеризации парафинов и олефинов многое дала для уточнения нашего представления об основах химизма этих процессов. [c.103]


Смотреть страницы где упоминается термин Время в каталитическом процессе: [c.168]    [c.119]    [c.18]    [c.65]    [c.3]    [c.36]    [c.15]    [c.310]    [c.168]    [c.26]    [c.608]    [c.116]    [c.78]    [c.123]    [c.29]    [c.142]    [c.302]    [c.323]   
Теоретические основы электрохимического анализа (1974) -- [ c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Липпмана переходного времени, каталитический процесс

Процесс каталитический



© 2025 chem21.info Реклама на сайте