Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции замещения в комплексах переходных элементов

    Реакции замещения в комплексах переходных элементов [26, 27] [c.477]

    В гомолитическом процессе, в котором каждый из участвовавших в разрывающейся связи атомов присоединяет один электрон, в случае непереходных элементов образуются нестабильные свободные радикалы с нечетным числом электронов. В случае же комплексов переходных металлов, согласно общепринятым взглядам, гомолиз фактически приводит к переносу от лиганда к металлу одного электрона электронной пары, которой он был связан в комплексе. Этот свободный радикал металла, вероятно, не менее стабилен, чем его предшественник, и весь процесс лучше всего рассматривать как восстановление. Таким образом гомолиз, который в химии углерода является обычным способом осуществления реакции замещения, может превратиться в окислительно-восстановительный процесс, осо нно в химии комплексов переходных металлов. [c.31]


    Известные плоские квадратные галогенидные комплексы металлов являются комплексами ионов переходных элементов с электронной конфигурацией Эти ионы присутствуют в кристаллах и инертны к реакциям замещения, так что они существуют и в растворах, однако спектры большинства из них получены лишь недавно. Спектры этих ионов имеют широкие полосы переноса заряда, расположенные вплоть до голубой области спектра. Следовательно, в данном случае ртутная дуговая лампа не очень пригодна для возбуждения спектров КР, и необходимы более современные источники Не—Ме-лазеры. Соответствующие данные представлены в табл. 7. [c.64]

    Рассмотрим те реакции, которые происходят со сравнимыми скоростями. Очевидно, здесь в процессе замещения происходит разрыв связей углерода с различными элементами. Близость скоростей реакций в этих случаях свидетельствует, по мнению Баннета, о том, что в стадиях, определяющих скорости соответствующих реакций, не происходит расщепления или существенного ослабления указанных связей. В противном случае следовало бы ожидать, что скорости этих реакций будут отличаться друг от друга гораздо сильнее. Эти результаты, не совместимые с гипотезой о синхронном механизме S v2, использовали в качестве аргумента в пользу механизма с образованием промежуточного комплекса [88]. Однако они поддаются объяснению и в рамках другого, одностадийного механизма, если конфигурация переходного состояния сходна с конфигурациями реагентов [90]. [c.60]

    Представление о карбкатионном характере переходного состояния в рассматриваемых реакциях дает возможность правильно предсказать ориентацию при присоединении к несимметрично замещенным олефинам, закономерности которой были сформулированы Марковниковым около 100 лет назад при присоединении галоген-водородов и воды отрицательный элемент присоединяется к наименее гидрогенизированному атому углерода. Если предположить, что строение активированного комплекса близко к карбкатиону, очевидно, что присоединение электрофильного агента (например, протона) должно идти преимущественно с образованием более стабильного катиона. Поскольку увеличение числа алкильных заместителей при катионном центре стабилизирует карбкатион, протон должен присоединяться к менее замещенному атому углерода  [c.381]

    Поскольку данная теория предполагает, что между реагирующими веществами и переходным комплексом существует равновесие, задача по существу ставится так же, как и при расчете констант равновесия для реакций изотопно замещенных молекул. Колебания переходного комплекса приводят к диссоциации последнего на продукты реакции, поэтому соответствующая частота оказывается мнимой № отношение констант скорости, а также отношение констант равновесия для молекул, содержащих различные изотопы определенного элемента, зависят от отношения этих частот. Отсутствие информации о квантовых состояниях переходного комплекса создает определенные трудности, которых часто можно избежать, используя некоторые приближения, так как для переходных комплексов, содержащих различные изотопы какого-либо элемента, необходимо знать только отношение функций распределения. В худшем случае максимальное значение можно оценить, предполагая, что изотопный атом не входит в состав переходного комплекса. Согласно теоретической оценке, максимальное значение изотопного эффекта достигается, если изотопный атом непосредственпо присоединен к реагирующей связи (первичный изотопный эффект). При замещении атома Н на Н изотопный эффект такой реакции равен 60 для атомов С и С , а также и эта величина равна 1,5 и 1,02 соответственно. [c.210]


    Реакции замещения в водных растворах — наиболее простой способ получения комплексов. Этот способ основан на взаимодействии гидратирО Ванного ио,на металла с координируемым лигандом. Если металл относится к элементам переходных рядов, реакция обычно сопровождается изменением цвета раствора. [c.190]

    Соединения первой группы изучены недостаточно глубоко. Содинения второй группы едва ли стоит здесь рассматривать, поскольку замещение лиганда, лежащего в плоскости, либо слишком сложно, либо приводит к нарушению плоского строения комплекса. В соединениях конфигурации (1 и двум незанятым аксиальным положениям присуща обычно небольшая (и только в ряде случаев существенная) реакционная способность, которая может стать причиной реакций замещения. Действительно, реакционная способность ионов переходных элементов первого ряда с конфигурацией и очень высока. При 25° С период полураспада ионов г aq и в реакциях замещения [c.68]

    Каких-нибудь 10 лет назад стабильные 5-ксюрдина-ционные соединения, найденные у элементов, находящихся за пределами очень ограниченной области периодической таблицы, считались редкостью. В последние годы, однако, было опубликовано много работ, в которых сообщалось об открытии все новых и новых 5-координацион-ных систем. Что касается простых реакций замещения, то такие системы всегда представляли огромный интерес, так как большинство промежуточных соединений и переходных состояний 5-координационные. И при ассоциативном механизме, обычном при замещениях в тетраэдрических и плоских 4-координационных комплексах, и при диссоциативном механизме, который, как мы увидим позднее, является обычным при замещениях в октаэдрических комплексах, образуются 5-координационные переходные состояния или промежуточные соединения. В последнее время основное внимание уделяется стереохимической нежесткости или псевдовращению. Относительная легкость, с которой происходят внутримолекулярные топологические изменения во многих 5-коор-динационных соединениях, стимулировала появление большого количества работ. В то же время число работ, посвященных чисто кинетическому изучению реакций замещения в соединениях с координационным числом 5, невелико. [c.105]

    Комплексы рутения и осмия с окисью азота. Известны разнообразные комплексы Ru и Os с окисью азота, но осмиевые соединения не отличаются особой устойчивостью и не очень интересны. Однако рутений образует очень много комплексов с N0 — значительно больше, чем любой другой переходный элемент эти комплексы составляют очень важную особенность химии рутения. Группа RuNO, содержащаяся в указанных соединениях, может входить в состав как анионных, так и катионных октаэдрических комплексов она отличается исключительной устойчивостью и сохраняется в ходе разнообразных реакций замещения и окислительно-восстановительных реакций. Во всех случаях, когда рутениевое соединение или раствор, содержащий рутений, находится в течение некоторого времени в контакте с окисью азота, можно почти с уверенностью ожидать, что образовалась связь металла с N0. Несомненно, продажные образцы соединений Ru могут содержать окись азота и перед использованием их всегда следует проверять на содержание N0. Такую проверку удобно вести при помощи ИК-спектров, так как у всех рутениевых комплексов с N0 имеется интенсивная полоса поглощения в области 1845—1930 см" [c.428]

    По сравнению с легкими переходными элементами тяжелые переходные элементы образуют сравнительно меньше октаэдрических комплексов и гораздо больше комплексов с более высокими и более низкими координационными числами. В отношении октаэдрических комплексов Таубе отметил, что такие комплексы ионов переходных элементов, имеющих несвязывающие электроны на трех и только на трех -орбиталях, подвергаются реакциям замещения медленно. Поскольку тяжелые переходные элементы имеют [c.230]

    Реакция замещения я-аллильной группы атомами галоида или атомами других элементов, так же как переход я-аллильной связи в а-связь, в сущности является процессом, ведущим к обеднению электронами атома переходного металла и тем самым к повышению его положительного заряда. Как видно из табл. 14, окисление металла в я-аллильном комплексе сопровождается измене- [c.98]

    Гидрогенолиз хлоруглеводородов гидридами металлов и комплексными гидридами элементов интенсивно исследуется в течение последних двадцати лет. Наибольшее число работ посвящено исследованию взаимодействия хлорорганических соединений с литийалюминийгидридом, натрийборгидри-дом и гидридами оловоорганических соединений [141—144]. Известны примеры восстановления хлорорганических соединений гидридами кремний-, германий- и свинецорганических соединений. По механизму реакции эти восстановители можно разделить на две группы. К первой группе относятся литийалюминийгидрид, натрийборгидрид и родственные соединения. Имеется много данных в пользу того, что реакции галоидоуглеводородов с этими соединениями имеют гетеролитический характер и относятся к типу нуклеофильного замещения [141, 142, 145, 146]. Скорость реакции падает от первичных к вторичным, а третичные галоидопроизводные в основном дегидрохлорируются [143, 147], что соответствует порядку реакционной способности галоидопроизводных в реакциях 15 у2-типа. Хазельдин и Осборн [148] считают, что переход гидрид-иона происходит в циклическом переходном комплексе. В соответствии с этим механизмом находится стереохимия восстановления оптически активных галоидопроизводных [149—151]. Нуклеофильный характер восстановления галоидоуглеводородов натрийборгидридом проявляется и в следующих особенностях реакции. Браун и Белл [146] заметили, что восстановление бензгидрилхлорида в дифенилметан натрийборгидридом в присутствии воды (20% воды, 80% диглима) идет при 45° С в 60 раз быстрее, чем в тех же условиях в отсутствие воды. Авторы предполагают, что реакция идет с промежуточным образованием карбоний-катионов по схеме [c.506]



Смотреть страницы где упоминается термин Реакции замещения в комплексах переходных элементов: [c.140]    [c.391]    [c.339]    [c.184]    [c.414]    [c.90]    [c.383]    [c.245]   
Смотреть главы в:

Основы квантовой химии -> Реакции замещения в комплексах переходных элементов




ПОИСК





Смотрите так же термины и статьи:

Реакции замещения

Элементы комплекса

Элементы переходные



© 2025 chem21.info Реклама на сайте