Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифференцировка мышечных клеток

    Клетки (волокна) скелетных мышц у позвоночных составляют один из четырех видов специализированных клеток, несущих функцию сокращения. Они ответственны за произвольные движения. Каждая клетка представляет собой синцитий и образуется в результате слияния миобластов. Миобласты могут быть стимулированы к пролиферации факторами роста, такими как ФРФ. но после слияния они уже делиться не могут. Слияние миобластов обычно сопряжено с началом дифференцировки мышечной клетки, когда в ней координированным образом включается много различных генов. Впоследствии клетки могут видоизменять свой дифференцированный характер путем изменения набора синтезируемых ими изоформ белков. В мышцах взрослого организма часть миобластов продолжает существовать в состоянии покоя в виде клеток-сателлитов. В случае повреждения мышцы они играют роль стволовых клеток - начинают пролиферировать и сливаться, чтобы возместить утрату мышечных волокон. [c.193]


    Наиболее известный факт, говорящий о существовании клеточной памяти,-это стойкое сохранение дифференцированного состояния клеток во взрослом организме (см. гл. 16). Благодаря клеточной памяти неделящиеся клетки (например, нейроны) сохраняют свои характерные особенности, а делящиеся передают их потомкам. Однако дифференцировка, проявляющаяся внешне,-это обычно лишь последний этап длительного процесса. Благодаря клеточной памяти стимулы, направляющие клетку на тот или иной путь дифференцировки, могут оказывать свое действие значительно раньше. Например, в сомитах некоторые клетки на очень раннем этапе специализируются как предшественники мышечных клеток, а затем мигрируют из сомитов в те участки, где будут формироваться конечности (подробнее см. в разд. 15.9.3). Эти предшественники еще не содержат больших количеств специализированных сократительных белков, характерных для зрелых мышечных волокон они даже внешне не отличаются от других клеток зачатка конечности, которые происходят не из сомитов. Только через несколько дней они приобретают внешние признаки дифференцировки и начинают интенсивно синтезировать специфические мышечные белки. Остальные клетки будущей конечности, расположенные здесь же, дифференцируются в элементы соединительной ткани. Следовательно, выбор программы развития в мышечную клетку или же в соединительнотканную клетку произошел задолго до того, как это проявилось во внешней диффереицировке. Вероятно, эта программа была записана в клетках в виде менее явных химических изменений. [c.75]

    Дифференцировка клеток как процесс репрессии и дерепрессии белкового синтеза. Ранее ученые считали, что процесс дифференцировки клеток в эмбриогенезе, приводящий к возникновению различных специализированных типов клеток, обусловлен избирательной необратимой утратой различных генов геномом эмбриона. В настоящее время твердо установлено, что все клетки высшего организма содержат полный набор генов, характерный для данного организма, но в клетках каждого типа большинство генов репрессировано ( выключено ). Например, все клетки позвоночных, по-видимому, имеют гены для миозина, но эти гены включены только в мышечных клетках. Генетическую универсальность соматических клеток можно продемонстрировать на некоторых высших растениях в определенных условиях из отдельной дифференцированной клетки растения томата можно вырастить целое растение. В пользу представления об идентичности геномов всех диплоидных клеток данного организма свидетельствует и тот факт, что все соматические диплоидные клетки организма содержат одно и то же число ДНК. [c.394]


    Миобласты, размножавшиеся в культуре целых два года, все еще сохраняют способность к дифференцировке, и при надлежащем изменении культуральных условий они будут сливаться, образуя мышечные клетки. По-видимому, ключевым компонентом среды, поддерживающим пролиферацию и препятствующим дифференцировке, служит фактор роста фибробластов (ФРФ) если его удалить, клетки быстро [c.190]

    Биохимические функции. В репродуктивных тканях андрогены отвечают за их дифференцировку и функционирование. Образовавшийся в семенниках тестостерон и его активный метаболит ДГТ проникают в клетки-мишени методом простой или облегченной диффузии и взаимодействуют с одним и тем же белковым рецептором. Образовавшиеся гормон-рецепторные комплексы перемещаются в ядро, связываются с хроматином и стимулируют процессы синтеза белка (гл. И). В репродуктивных органах эти процессы реализуются в половой дифференцировке, основные этапы которой представляют собой хромосомы—гонады—фенотип. Кроме того, андрогены стимулируют сперматогенез, половое созревание и по принципу обратной связи контролируют секрецию гонадотропинов. Помимо влияния на функционирование репродуктивной системы, андрогены участвуют в контроле клеточного метаболизма многих других тканей и органов. Независимо от типа ткани андрогены проявляют анаболические эффекты, связанные со стимуляцией процессов транскрипции и увеличения скорости синтеза белка. Более всего андрогенных клеток-мишеней находится в скелетных мышцах, причем под действием гормонов происходит резкое увеличение мышечных белков и наращивание мышечной массы. Стимуляция белок-синтетических процессов под действием андрогенов отмечена в почках, сердечной мышце, костной ткани. Андрогены образуются не только в семенниках, но и в яичниках. Их роль в организме женщин или самок животных заключается в формировании поведенческих реакций, а также в контроле за синтезом белка в репродуктивных органах. [c.161]

    Слипание и слияние мембран — универсальный н нормальный процесс, важная стадия гетерологичного и гомологичного межмембранного взаимодействия в ходе эндоцитоза и экзоцитоза оплодотворения клеток, митоза дифференцировки тканей например, при биогенезе мышечных волокон при обмене информационными макромолекулами между клетками в процессе приобретения клетками новых антигенных свойств в ходе аутоиммунных реакций (например, при слиянии макрофагов с лимфоцитами) при липосомной химиотерапии при секреции ядер-ного содержимого в цитоплазму при слиянии макрофагов во время воспаления тканей. [c.84]

    Межклеточные взаимодействия. Со времени открытия клеточного строения организмов исследователей интересуют как минимум два вопроса, решение которых связано с клеточными поверхностями. Во-первых, как клетки взаимодействуют друг с другом, чем обусловлена специфика взаимодействия, обеспечивающая в отдельных случаях достаточную силу противодействия напряжению, например, в мышечной ткани. И, во-вторых, как клетки обмениваются информацией, что обеспечивает их согласованный рост, дифференцировку, выполнение своих функций по определенному сигналу и др. С клеточными поверхностями связаны процессы секреции, оплодотворения, освобождения и место действия медиаторов и многих гормонов, эндо- и экзоцитоз, клеточное деление, синтез белка и других биологически важных молекул, иммунный ответ, движение клеток и т. п. [c.66]

    Хотя в химических основах механизма дифференцировки клеток еще много неясного, все же известно, что в этом процессе исключительно важную роль играют химические сигналы, поступающие из внешней среды и от прилегающих клеток. Эти сигналы запускают внутреннюю, генетически детерминированную программу развития, определяющую путь дифференцировки отдельных клеток. С какой точностью выполняется программа развития, можно показать на примере коловраток и кольчатых червей (рис. 1-10), отдельные виды которых характеризуются почти непогрешимым постоянством числа клеток. Так, у нематоды Oxyuris equi имеются точно 251 нервная клетка, одна экстреторная клетка, 18 клеток средней кишки и 64 мышечные клетки [140]. [c.352]

    Клетки некоторых типов, для того чтобы достичь места своего назначения, преодолевают большие расстояния, мигрируя через другие ткани зародыша. Один из примеров-первичные половые клетки их окончательная локализация в организме частично определяется гибелью тех клеток, которые осели в неподходящих местах. Из мигрирующих предшественников образуются также мышечные клетки конечностей у позвоночных. Еще один важный пример-клетки нервного гребня. Они служат предшественниками клеток многих типов, в том числе меланоцитов, периферических нейронов и глии, а также соединительной ткани головы. Клетки нервного гребня, тходившиеся в разных участках продольной оси тела, мигрируют по разным маршрутам, направление которых определяется, вероятно, механическими контактами или же химическими факторами внеклеточного матрикса и клеточных поверхностей. До начала миграции клетки нервного гребня детерминированы не полностью например, клетки, из которых в норме образуются парасимпатические нейроны, после пересадки в другой участок нервного гребня дают начало симпапш-ческим нейронам. Можно показать, что дифференцировка этих мигрирующих клеток определяется окружением, в котором они обосновались. Элементы миграционного поведения характерны для всех нейронов, и эта особенность играет важную роль в развитии нервной системы. [c.126]


    Во-вторых, можно показать, что базальная мембрана удерживает аксон в месте синапса. Если разрушить только мышечную клетку, окончание аксона остается связанным с базальной мембраной на протяжении многих дней. С другой стороны, удаление базальной мембраны с помощью коллагеиазы приводит к тому, что окончание аксоиа отделяется, даже при сохранности мышечной клетки. Самое удивительное то, что базальная мембрана способна указать регенерирующему аксону место прежнего нервно-мышечного контакта и вызвать локальную дифференцировку аксоиа с образованием зрелого [c.114]

    Наиболее очевидный фактор — это активность пресинаптиче-ского нервного волокна. Как показано на рис. 18.10А, в постсинаптической мишени возможны различные эффекты. Активность пресинаптического волокна может влиять на дифференцировку мышечной трубки и превращение ее в зрелую мышечную клетку (путем выброса медиатора или прямого электрического воздействия). Пресинаптическая активность может также вносить свой вклад в формирование других свойств мышечной мембраны. В месте самого контакта выделение медиатора (ацетилхо-лина) в результате пресинаптической активности влияет на распределение рецепторов ацетилхолина вне зоны синапса и способствует стабилизации отложений фермента холинэстеразы. [c.22]

    Свойства возбудимости Одновременно с дифференцировкой формы нейрона происходит приобретение характерных физиологических свойств. Этот процесс изучался на множестве различных систем, включая мышечные клетки, клетки нейробластомы в культуре, большие идентифицированные нейроны типа клеток Рогона — Бирда у лягушки, а также несколько разных типов клеток у прямокрылых. [c.245]

    ТОК, наследуемые всеми потомками. Действие стимула. ограничивает способность клеток к дифференцировке теперь они могут дифференцироваться в одном или немногих направлениях.- Так, миллиарды эритроцитов возникают из 8 стволовых клеток, миллиарды мелапоцитов — из 34 стволовых клеток. Из других групп стволовых клеток возникают нервные клетки, мышечные клетки, клетки хряща. [c.235]

    Процессы роста п дифференцировки мышечных клеток в культуре очень сходны с соответствующими процессами, происходящими в зародыше. Можно видеть, что в течение первых 4—5 дней культивирования одиночная родительская клетка образует клон, состоящий нриблизительпо пз 50 одноядерных клеток (5—6 поколений). Затем клетки начинают сливаться, соединяясь своими [c.238]

    Изучая эмбриогенез куриного зародыша, И. И. Шмальгаузен пришел к выводу, что в онтогенезе происходит чередование периодов роста и дифференцировки и что периоды депрессии роста характеризуются усиленной дифференцировкой и наоборот. Со сменой этих периодов и связаны изменения константы роста. Следует все же заметить, что оба процесса (рост и дифференцировка) всегда сопутствуют друг другу. Допустимо говорить лишь о преобладании то одного, то другого процесса. Кроме того, в то время как в одном органе преобладает рост, в другом могут преобладать процессы дифференцировки и наоборот. Дифференцировка приводит к определенным качественным изменениям клеток, обусловливающим снижение или полную потерю их способности к размножению. Так, высокодифференцированные нервные и мышечные клетки не размножаются. Поэтому единство двух процессов — роста и дифференцировки — в конце концов приводит к тому, что организм достигает зрелости и у него прекращается рост (как у животных с определенным ростом) или он в значительной мере замедляется (как у организмов с неопределенным ростом). [c.189]

    При дифференцировке обработанных клеток около 25% из нш превращаются в мышечные клетки (миобласты). Высокая частота образования миобластов наталкивает вашего руководителя на мысль, что всю трансформацию может запускать единственны главный ген-регулятор, который в норме находится в репрессированном состоянии вследствие метилирования. Чтобы это проверить, руководитель уговаривает вас провести дорогостоящую поисковую работу проклонировать этот ген Вы предполагаете, что ген до обработки 5-аза-С находится в выключенном состоянии и включается лишь в индуцированных миобластах. Если это предположение правильно, то среди кДНК-копий с мРНК, синтезируемых после обработки 5-аза-С, должны обнаружиться последовательности, соответствующие этому гену. [c.162]

    Культуры, приготовленные непосредственно из тканей организма, с использованием первичного этапа фракционирования клеток и без оного, называют первичными культурами. В большинстве случаев клетки первичной культуры можно перенести из культуральной чашки и использовать для получения большого количества вторичных культур, которые можно последовательно перевивать в течение недель или месяцев. Часто эти клетки сохраняют признаки дифференцировки тех тканей, из которых они были получены. Так, фибробласты продолжают синтезировать коллаген, клетки скелетных мышц эмбриона сливаются, образуя гигантские мышечные волокна, которые спонтанно сокращаются в чашках для культуры тканей у нервных клеток возникают аксоны, характеризующиеся электровозбудимостью и способностью формировать синапсы с другими нервными клетками клетки эпителия формируют обширные слои, сохраняющие многие свойства интактного эпителия. Поскольку все эти события можно наблюдать при росте клеток в культуре, для их изучения используют многие методы, недоступные при работе с интактными тканями. [c.204]

    Наиболее известное доказательство существования клеточной намятистойкое сохранение дифференцированного состояния клеток во взрослом организме (см. разд. 13.4.1). Благодаря клеточной памяти стимул, направивший клетку на тот или иной путь дифференцировки, может оказывать свое действие на ее потомков. Некоторые клетки сомитов позвоночных специализируются как предшественники мышечных клеток на очень ранних стадиях развития и мигрируют из сомитов в различные части тела, в том числе в области формирования конечностей все это сложное поведение определяется серией решений, принятых клетками значительно раньше, а именно до и во время гаструляции (см разд. 16.6.5). Эти клетки-предшественники еще не содержат большого количества сократительных белков, характерных для зрелых мышечных волокон они даже внешне не отличаются от других клеток зачатка конечности, имеющих иное происхождение. Только через несколько дней они приобретают внешние признаки, характерные для дифференцированных мышечных клеток и начинают интенсивно синтезировать специфические для этих клеток белки. Остальные клетки будущей конечности, расположенные здесь же, дифференцируются в элементы соединительной ткани. Следовательно, выбор программы развития (т.е. станет ли клетка мышечной или клеткой соединительной ткани) происходит задолго до того, как проявляются внешние нризнаки дифференцировки. Вероятно, эта программа записана в клетках в виде трудно уловимых химических модификаций (в данном случае, по-видимому, происходит активация первичного специфического для мышиных клеток регуляторного гена - см. разд. 10.1.8). [c.81]

    Не менее серьезное значение приобретает культивирование кроветворной ткани и в связи с рядом практических медицинских задач. Известно, что успешную трансплантацию лимфоидной и кроветворной ткани можно осуществить при использовании клеточных суспензий. При этом происходит репопуляция пересаженных клеток соответственно в органы лимфо- и гемопоэза реципиента. Репопулировав-шие клетки донора способны к полноценной пролиферации и дифференцировке. Так, введение суспензии клеток костного мозга в летально облученный организм обеспечивает его защиту. Восстановление гемопоэза в облученном реципиенте обусловливается пролиферацией и дифференциров-кой стволовых кроветворных клеток, которые представляют собой длительно самоподдерживающуюся клеточную линию. Способность полноценно выполнять свои функции при трансплантации в виде суспензии разобщенных клеток— характерная особенность лимфоидной и кроветворной ткани. В этом отношении они выгодно отличаются от таких тканей, как почечная, мышечная и др., для которых трансплантация разобщенных клеток не ведет к восстановлению функций соответствующего органа. [c.5]

    При определенных условиях культивирования (в суспензионном состоянии) ЭС клетки формируют эмбриоидные тела, которые представляют собой зачатки эндодермы, эктодермы и мезодермы, напоминая постимпланта-ционное эмбриональное развитие. Если эмбриоидные тела прикрепляются к субстрату, то клетки, формирующие внутренние слои таких тел, способны в дальнейшем дифференцироваться в широкий спектор тканей, такие как мышечная, нервная, эпителиальная и др. Способность ЭС клеток к дифференцировке in vitro используется как модель для исследования процессов клеточной дифференцировки в разные типы тканей. [c.293]


Смотреть страницы где упоминается термин Дифференцировка мышечных клеток: [c.175]    [c.193]    [c.122]    [c.196]    [c.23]    [c.238]    [c.102]    [c.168]    [c.289]    [c.40]    [c.88]    [c.121]    [c.123]    [c.123]    [c.66]    [c.204]    [c.81]    [c.102]   
Смотреть главы в:

Методы культуры клеток для биохимиков -> Дифференцировка мышечных клеток




ПОИСК







© 2025 chem21.info Реклама на сайте