Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нервный миграция клеток

    Мышцы, сердце, жгутики, бактерий, миграция белых кровяных шариков Секреция желез, всасывание в кишечнике, поглощение н выделение веществ против градиента концеитрации (почки) Нервные клетки, электрические органы рыб Синтез структурных элементов клетки, гормонов, ферментов Светляки, светящиеся бактерии [c.461]

    Другая стратегия формирования ткани представляется более сложной и включает миграцию клеток одна клеточная популяция проникает в другую и объединяется с ней (а иногда и с другими мигрирующими клетками), формируя ткань смешанного происхождения. Например, в зародышах позвоночных клетки нервного гребня выселяются из эпи- [c.513]


    Позиционные значения, приобретаемые клетками в процессе пространственной организации зародыша, выражаются адгезионными свойствами их поверхности, а также их внутренним химизмом. Клетки одного тит стремятся взаимодействовать между собой и отделяются от иных, отличающихся от них клеток таким образом происходит стабилизация пространственной организации и обеспечивается способность клеток к спонтанной сортировке при их искусственном смешивании. Изменение характера адгезионных свойств лежит в основе морфогенетических процессов, таких, как гаструляция, нейруляция и формирование сомитов. Поскольку характер позиционных значений данного класса клеток проявляется через изменение свойств клеточной поверхности, он может управлять миграцией других популяций эмбриональных клеток в процессе сборки сложных тканей или органов. Вероятно, у позвоночных клетки соединительной ткани являются первичными носителями позиционной информации. Клетки соединительной ткани дермального слоя кожи способны контролировать региональную специализацию эпидермиса, формирующего перья и чешуи. Сходным образом клетки соединительной ткани конечности контролируют и координируют образование структур, формируемых популяциями мигрирующих клеток, к числу которых относятся мышечные клетки (производные сомитов), аксоны нервных клеток (от центральной нервной системы и периферических ганглиев) и пигментные клетки (производные нервного гребня). Несмотря на то что к настоящему времени идентифицированы многие молекулы клеточной адгезии общего назначения, а также показано, что некоторые из них выполняют в этих процессах центральную роль, молекулярные механизмы, направляющие миграцию клеток по определенным маршрутам к строго определенным местам назначения в конечностях, до сих пор неизвестны. [c.142]

    Миграцию нейронов направляют специализированные элементы нервной трубки - радиальные глиальные клетки (рис 19-58, А). Это сохранившиеся клетки первоначального столбчатого эпителия нервной трубки, которые все больше вытягивались, по мере того как стенка трубки утолщалась каждая из этих клеток простирается от внутренней поверхности трубки до наружной. В некоторых участках развивающегося головного мозга приматов это расстояние может достигать 2 см. Трехмерная реконструкция по электронным микрофотографиям серийных срезов показывает, что незрелые мигрирующие нейроны тесно примыкают к радиальным глиальным клеткам и, видимо, как бы ползут по ним (рис 19-58, Б и В). [c.348]


    На рис. 10.2 показана общая схема дифференцировки клеток и их миграции из областей, где они образовались. Клетки, возникающие из нервной трубки, могут быть либо предшественниками нейронов, либо предшественниками клеток глии. С нервной трубкой связано также клеточное образование, называемое нервным гребнем. Как показано на рисунке, нейробласты гребня мигрируют сквозь периферические ткани и дают начало нескольким типам нейронов периферической нервной системы. [c.238]

    Динамика экспрессии индивидуальных генов в развивающемся мозге очень различна и по мере развития отделов мозга приобретает черты, отражающие их паттерн экспрессии в мозге взрослых животных. Экспрессия этих генов в клетках герминативных зон может означать, что судьба индивидуальных клеточных линий в нервной системе предопределена уже до начала их миграции из герминативной зоны. [c.34]

    Жизнедеятельность клеток (и естественно, организма) во многом определяется структурой, физиологическими свойствами и функциональным состоянием их мембранных структур. Кроме обеспечения целостности и гетерогенности клетки мембраны принимают участие во всех физио-лого-биохимических процессах. Как справедливо отмечает акад. Е. М. Крепе, мембраны — это арена, на которой разыгрываются важнейшие биохимические, физические и химические процессы. Эти процессы проявляются в транспорте веществ, функционировании ферментативных комплексов, миграции энергии, синтезе белка, нуклеиновых кислот и делении клетки, восприятии энергии внешней среды и трансформации ее в энергию биологического возбуждения, передаче нервного импульса, дыхании, пищеварении, иммунитете, секреторной деятельности, узнавании и взаимодействии клеток и др. [c.9]

    Существует определенная связь между датой рождения нейрона в центральной нервной системе млекопитающих и местом его окончательной локализации (возможно, это эволюционный отголосок жесткой связи между генеалогией клеток в развивающемся организме и конечной локализацией их у таких беспозвоночных, как нематоды - см. разд. 16.3). Например, в коре головного мозга нейроны располагаются слоями в соответствии с последовательностью их рождения благодаря такой миграции, при которой клетки, образовавшиеся позднее, мигрируют дальше клеток, образовавшихся раньше. По мере созревания клетки, расположенные в следующих друг за другом слоях коры, начинают различаться по форме, размерам и характеру связей с другими клетками. Так, малые пирамидные клетки, появляющиеся поздно, расположены [c.349]

    Каков бы ни был механизм, направляющий миграцию, клегки из различных частей нервного гребня в конце концов попадают в разные участки тела, где соответственно по-разному дифференцируются. Например, большинство клеток, превращающихся в нейроны симпатических ганглиев, начинает синтезировать нейршедиатор норадреналин, а большинство клеток парасимпатических ганглиев-ацетилхолин. До миграции клетки нервного гребня внутренне еще не детерминированы как предшественники симпатических или парасимпатических нейронов. Если пересадить ткань из переднего участка нервного гребня, нз которого в норне образуются симпатические ганглии, в грудной отдел, то трансплантированные клетки будут дифференцироваться в соответствии со своим новым положением и вместо норадреналина будут синтезировать ацетилхолин. [c.125]

    Клетки некоторых типов, для того чтобы достичь места своего назначения, преодолевают большие расстояния, мигрируя через другие ткани зародыша. Один из примеров-первичные половые клетки их окончательная локализация в организме частично определяется гибелью тех клеток, которые осели в неподходящих местах. Из мигрирующих предшественников образуются также мышечные клетки конечностей у позвоночных. Еще один важный пример-клетки нервного гребня. Они служат предшественниками клеток многих типов, в том числе меланоцитов, периферических нейронов и глии, а также соединительной ткани головы. Клетки нервного гребня, тходившиеся в разных участках продольной оси тела, мигрируют по разным маршрутам, направление которых определяется, вероятно, механическими контактами или же химическими факторами внеклеточного матрикса и клеточных поверхностей. До начала миграции клетки нервного гребня детерминированы не полностью например, клетки, из которых в норме образуются парасимпатические нейроны, после пересадки в другой участок нервного гребня дают начало симпапш-ческим нейронам. Можно показать, что дифференцировка этих мигрирующих клеток определяется окружением, в котором они обосновались. Элементы миграционного поведения характерны для всех нейронов, и эта особенность играет важную роль в развитии нервной системы. [c.126]

    Мы начнем с анализа движений и сил, определяющих форму эмбриона у амфибий и морских ежей. Проблема клеточной дифференцировки и экспрессии различных генов в зависимости от места клеток в организме будет рассмотрена сначала на примере мыши, затем дрозофилы и, наконец, на примере развития конечностей у тараканов и птиц. Для сравнения будет описан онтогенез червя СаепогкаМи1з екдат, для которого в отличие от насекомых и позвоночных характерна чрезвычайная точность и предопределенность всех процессов развития, что позволяет с полной достоверностью предсказать судьбу каждой отдельной клетки. И наконец, мы вкратце рассмотрим миграцию клеток в зародышах позвоночных. Этот последний раздел может послужить как бы предисловием к обсуждению специальных проблем развития нервной системы (гл. 18). [c.53]


    Большая часть производных нервного гребня была выявлена еще в ранних экспериментах, в которых гребень просто удаляли и отмечали возникавшие после этого дефекты. Позднее удалось проследить судьбу клеток нервного гребня у цышхенка более прямым путем-этн клеткн метили до начала нх миграции. Использовали два типа меченых клеток клетки куриного эмбриона, меченные радиоактивным тимидином, и клеткн из эмбриона перепела Меченые клетки нервного гребня обоих типов трансплантировали в тот или иной участок на место собственной ткани нервного гребня зародьппа-ре-ципиента (рис. 15-73). Спустя несколько дней пересаженные клетки можно бьшо идентифицировать в различных местах. Такие эксперименты показали, что к производным нервного гребня относятся также клетки, вырабатывающие гормон кальцитонин, и клетки каротидных телец (внутренних рецепторов, воспринимающих pH крови и содержание в ней кислорода). Удалось также кое-что выяснить относительно факторов, влияющих на миграцию и дифференцировку клеток нервного гребня. [c.123]

Рис. 15-74. Главные пути миграции клеток нервного гребня у куриного эмбриона (схематический поперечный разрез средней части тела). Из клеток, передвигающихся непосредственно под эктодермой (поверхностным путем), образуются пигментные клетки кожи клетки, движущиеся по глубинному пути ч )ез сомиты, дают начало сенсорным и симпатическим ганглиям, и частично надпочечни-, кам. На этом уровне клетки нервного гребня не участвуют в образовании парасимпатических ганглиев. Рис. 15-74. <a href="/info/1062426">Главные пути</a> миграции клеток нервного гребня у <a href="/info/1375764">куриного эмбриона</a> (схематический <a href="/info/221508">поперечный разрез</a> <a href="/info/916048">средней части</a> тела). Из клеток, передвигающихся непосредственно под эктодермой (<a href="/info/94513">поверхностным путем</a>), образуются пигментные <a href="/info/1375767">клетки кожи клетки</a>, движущиеся по глубинному пути ч )ез сомиты, дают начало сенсорным и <a href="/info/265776">симпатическим ганглиям</a>, и частично надпочечни-, кам. На этом уровне <a href="/info/103255">клетки нервного</a> гребня не участвуют в образовании парасимпатических ганглиев.
    Как показано на рис. 15-75, различные участки нервного гребня служат источником исток, образующих различные ганглии. Предназначение клеток из разных учаегков гребня определяется не их изначальными свойствами, а просто разницей в расположении до миграции. Если взять клетки нз переднего участка, в норме предназначенные для построения парасимпатических ганглиев, и пересадить несколько дальше назад, из них образуются симпатические ганглии и наоборот, после перемещения клеток этого заднего участка вперед из них вместо симпатических возникнут парасимпатические ганглии. [c.124]

    Нервная ткань состоит не только из нейронов, но всегда включает и поддерживающие, или глиальные, клетки (рис. 18-5). В головном мозгу млекопитающего соотношение клеток глии к нейронам составляет примерно 10 1 глиальные клетки заполняют практически все пространство, не занятое нейронами и кровеносными сосудами. Глиальные элементы центральной Нервной системы делятся на четыре основных класса астроциты, олигодендро-циты, эпендимные клетки и микроглиальные клетки. Астроциты обеспечивают как механическую, так и метаболическую поддержку тонкой и сложной системе нейронов, в них происходит синтез и распад важных для нейронов веществ. Кроме того, астроциты помогают контролировать ионный состав жидкости, окружающей нервные клетки. Олигодендроциты образуют изолирующую мнелиновую оболочку вокруг отростков центральных нейронов (см. рис. 18-22). Эпендимные клетки выстилают внутренние полости центральной нервной системы, а микроглиальные клетки представляют собой специализированный тип макрофагов. В процессе развития зародыша глиальные клетки, по-видимому, направляют миграцию нейронов и рост аксоиов и денд тов. Вероятно, у них есть и какие-то другие функции, пока не установленные. [c.75]

    Базальная мембрана играет важную роль в нроцессе регенерации ткани после повреждения. При парушепии целости мышечной, нервной или эпителиальной ткани сохранившаяся базальная мембрана служит субстратом для миграции регенерирующих клеток. Таким образом легко восстанавливается исходная архитектура ткани. Наиболее яркий пример роли базальной мембраны в регенерации мы находим при изучении нервно-мышечного соединения, в котором нервная клетка передает стимул волокну скелетной мышцы. [c.509]

    Антитела к N- AM нарушают нормальный ход развития сетчатки в тканевой культуре, а нри введении в развивающийся глаз нынленка препятствуют нормальному росту аксонов нервных клеток сетчатки. Как мы увидим позже (разд. 19.7.8), это позволяет предполагать, что N- AM играет важную роль в развитии центральной нервной системы, способствуя межклеточной адгезии. Кроме того, клетки нервного гребня, формирующие периферическую нервную систему, находясь в составе нервной трубки, имеют большое количество N- AM на своей поверхности и теряют его при миграции. Но когда они агрегируют, образуя ганглии, N- AM появляется вновь (см. рис. 14-56), что указывает на важную роль N-САМ в построении ганглия. N- AM экспрессируется также во время критических стадий в развитии многих ненервных тканей, где. как нолагают. эти молекулы способствуют удержанию вместе специфических клеток. [c.521]

Рис. 16-83. Главные пути миграции клеток нервного гребня у куриного эмбриона (схематический нонеречный разрез средней части тела). Из клеток, мигрирующих иепосредствеиио под эктодермой (поверхностный путь), образуются пигмеитиые клетки кожи клетки, движущиеся по глубинному пути через сомиты, дают начало сенсорным и симпатическим ганглиям, и частично надпочечникам (см. также рис. 14-55). Рис. 16-83. <a href="/info/1062426">Главные пути</a> миграции клеток нервного гребня у <a href="/info/1375764">куриного эмбриона</a> (схематический нонеречный разрез <a href="/info/916048">средней части</a> тела). Из клеток, мигрирующих иепосредствеиио под эктодермой (<a href="/info/94513">поверхностный путь</a>), образуются пигмеитиые <a href="/info/1375767">клетки кожи клетки</a>, движущиеся по глубинному <a href="/info/508772">пути через</a> сомиты, дают начало сенсорным и <a href="/info/265776">симпатическим ганглиям</a>, и частично надпочечникам (см. также рис. 14-55).
    От чего зависят такие различия - от даты рождения или от места окончательной локализации Ответить на этот вопрос помогают мыши мутантной линии гее1ег. У этих мутантов, названных так за нетвердую походку, нарушен механизм миграции нервных клеток нейроны, образовавшиеся позднее, остаются во внутреннем слое, а ранние клетки переходят в наружный. Но, несмотря на инверсию в их расположении, дифференцировка кортикальных клеток соответствует времени их рождения , т. е. клетки, образовавшиеся позже, становятся малыми пирамидными нейронами, а ранние клетки - большими пирамидными или же нейронами неправильной формы. Следовательно, в данном случае тип клетки определяется именно временем ее образования, а не окончательным местом (рис. 19-59). По-видимому, особенности нейронов и в самом деле обычно зависят главным образом от их происхождения и от места и времени образования. [c.350]

    Другая, значительно более сложная, стратегия образования ткани связана с миграцией отдельных клеток на некоторое расстояние и их последующим объединением с другими клетками-местного происхождения или тоже пришедшими извне. Например, в эмбрионах позвоночных клетки нервного греб- ня мигрируют во множество различных участков, где они дифференцируются и объединяются в разнообразные ткани, включая ткани периферической нервной системы (рис. 12-3). Для этого необходим какой-то механизм, направляющий клетки к конечному месту назначения это может бьггь, например, секреция вещества, привлекающего подвижные клетки (путем хемотаксиса), или [c.201]

    Д. П. Линднер и Э. М. Коган (1976), П. И. Александров и соавт. (1976) особое внимание обращают на антагонистические функции секретируемых тучными клетками веществ (функциональную двойственность), поэтому они могут рассматриваться как регуляторы тканевого гомеостаза малого радиуса действия или тактические регуляторы в отличие от нервной или эндокринной системы. Популяция тучных клеток регулирует кровоснабжение и проницаемость, влияет на размножение, миграцию, обмен и функцию других клеток микрорайона. Вероятно, на уровне популяции имеются какие-то механизмы, регулирующие антагонистические функции, т. е. обеспечивающие преимущественную секрецию одного или другого вещества. Так, при воспалении, вызванном иммунными факторами, важнейшую роль играет связывание поверхности тучных клеток IgE, что ведет к немедленному выбросу гистамина. Такое связывание обеспечивается наличием на поверхности тучных клеток специфических рецептрров для IgE. Важнейшую роль в секреции медиаторов тучными клетками в ответ на иммунные и неиммунные стимулы играют цАМФ и ионы кальция. [c.72]

    Известны два типа рецепторов NGF. Один из них обеспечивает проведение сигнала в нервную клетку, другой ускоряет миграцию Шван-новских клеток, окружающих нервное волокно. [c.142]

    Незрелый нейрон еще не образовавший аксона и дендритов, обычно мигрирует из места своего рождения в какой-нибудь другой участок. Такие миграции нейронов можно прослеживать с помощью -тимидина метка включается в клетки-предшественники, проходящие последнее деление, после чего их меченые потомки могут быть обнаружены в других местах. Например, мотонейроны, которые будут иннервировать конечности, проходят последний митоз около просвета нервной трубьси, а затем перемещаются к ее периферии и попадаюгт в вентральные роэ2 будущего спинного мозга (рис 19-57). [c.348]


Смотреть страницы где упоминается термин Нервный миграция клеток: [c.287]    [c.123]    [c.125]    [c.140]    [c.140]    [c.75]    [c.507]    [c.514]    [c.132]    [c.141]    [c.348]    [c.507]    [c.514]    [c.132]    [c.141]    [c.348]    [c.350]    [c.110]    [c.169]    [c.169]   
Молекулярная биология клетки Том5 (1987) -- [ c.202 , c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Миграция



© 2024 chem21.info Реклама на сайте