Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Миозин функции

    Миозин и актин являются, по всей вероятности, белками, обеспечивающими сократительную функцию мышц. Тропомиозин представляет собой индивидуальный белок с молекулярным весом 130 ООО или 65 ООО, а миозин — по-видимому, полимер тропомиозина. Актин образует с миозином соединение, играющее, вероятно, существенную роль в сокращении мышц. [c.445]

    Мышцы Сокращение, обеспечение двигательных функций Миозин (мышцы) [c.259]


    Число белков очень велико, различны их функции в организме. Например, в волокнах мышц имеется белок миозин, участвующ,ий в превращении химической энергии в механическую. Волосы, шерсть, ногти, роговой слой эпителия состоят в основном из белка кератина. Ферменты и гормоны (катализаторы и координаторы протекающих в живо.м организме реакций) также принадлежат к белкам или полипептидам. [c.626]

    В животном организме белки выполняют еще ряд других функций — опорные и защитные. Так, коллаген — составная часть костей, кожи и сухожилий обеспечивает прочность скелета, кератин — белок кожи защищает расположенные под кожей ткани от механических повреждений, миозин образует волокна, обусловливающие мышечные движения и т. д. [c.433]

    Фибриллярные белки служат основным строительным материалом животных тканей, т. е. выполняют ту функцию, которая более всего им подходит они нерастворимы и склонны к образованию волокон. К их числу относятся следующие белки кератин — в коже, волосах, ногтях, рогах и перьях коллаген — в сухожилиях миозин — в мускулах фиброин — в шелке. [c.1053]

    Проблемы, связанные с молекулярными основами превращений химической энергии АТФ в механическую энергию процессов сокращения и движения, чрезвычайно сложны [3, 15]. Это объясняется тем, что вне живого организма отсутствуют примеры непосредственного превращения химической энергии в механическую. Механическая работа может быть представлена сокращением мышц, а также движениями ресничек и жгутиков у простейших. Большинство клеток содержат сократительные нити (фибриллы), которые осуществляют организацию содержимого клетки, движение и перенос клеточных веществ, процессы клеточного деления и т. д. В качестве примера преобразования энергии АТФ в механическую работу можно привести процессы мышечного сокращения, связанные с использованием энергии АТФ [3, 15, 18], при этом важную функцию выполняют белковые компоненты мышечных клеток — комплекс миозина и актина, названный актомиозином. Актомиозин и его компонент миозин обладают АТФ-азной активностью, т. е. способны гидролизовать концевую фосфатную группу АТФ. Однако АТФ-азную активность актомиозина стимулируют ионы Mg +, а миозина — ионы Са +. Сигналом для сокращения мышц является электрический импульс, приходящий из двигательного нерва через нервномышечное соединение. До получения импульса по обе стороны мембраны (сарколемма) мышечной клетки поддерживается, разность потенциалов (с наружной стороны имеется избыточный положительный заряд). При распространении импульса по мембране разность потенциалов сразу исчезает. Считают, что это является результатом резкого повышения проницаемости мембраны для ионов К+, Na+ и Са2+ при этом направление потоков ионов вызывает разряд трансмембранного потенциала. После этого мембрана вновь возвращается в поляризованное состояние, а ионы Са + входят внутрь саркоплазматической сети мышечной клетки. Подобный перенос ионов Са + осуществляется за счет свободной энергии гидролиза АТФ (АТФ-азный кальциевый насос мембраны). Поставщиками АТФ в мышечных клетках служат как гликолиз, так и дыхание. Однако при нарушении этих процессов мышца (скелетная мышца позвоночных животных) при стимуляции продолжает сокращаться благодаря тому, что в ней содержится богатое энергией вещество — креатинфосфат (см. стр. 416), концентрация которого более чем в 4 раза превышает концентрацию АТФ. В мышце идет реакция  [c.430]


    Рассмотренные выше белки расположены таким образом, чтобы продемонстрировать различные аспекты структуры и функции. Эта классификация в известной степени произвольна. Так, читатель может принять во внимание, что гемоглобин и мышечные белки могут рассматриваться в разделе белок-белковых взаимодействий, тропонин С —как белок, связывающий ион металла, а миозин — как белок, претерпевающий посттрансляционное метилирование. Белки можно изучать в нескольких аспектах, включая биосинтез, структуру, взаимодействия и биологическую роль. Любая попытка их классификации будет, по-видимому, лишь частично успешной, однако она дает возможность выдвинуть на передний край сходства и различия. Рассмотренные белки охватывают очень широкую область, вследствие чего описания являются вынужденно краткими. Рекомендуем читателю обратиться к цитированным обзорам. [c.579]

    Сократительная функция. В акте мышечного сокращения и расслабления участвует множество белковых веществ. Однако главную роль в этих жизненно важных процессах играют актин и миозин—специфические белки мышечной ткани. Сократительная функция присуща не только мышечным белкам, но и белкам цитоскелета, что обеспечивает тончайшие процессы жизнедеятельности клеток (расхождение хромосом в процессе митоза). [c.21]

    Таким образом, специализированные структурные функции фибриллярных белков определяются их специфическим ориентированным строением. Биологическая роль таких белков не только защитная, как в случае кератина и фиброина. Выше уже указывалось, что коллаген необходим для остеогенеза, а миозин обладает ферментативной активностью — он катализирует гидролиз АТФ. [c.260]

    Авторы также пришли к выводу, что нецелесообразно выделить в виде отдельной главы вопросы, связанные с пространственной организацией биохимических процессов, сохранив в виде параграфа лишь вопрос о роли пространственного разобщения биохимических процессов как одного из регуляторных механизмов. Из огромной проблемы пространственной организации биохимических процессов в качестве иллюстрации сложности надмолекулярных структур, необходимых для реализации биологических процессов на уровне организма, сохранен параграф, посвященный биохимическим аспектам мышечного сокращения, тем более что это дает возможность осветить один из важнейших механизмов преобразования энергии (в данном случае химической энергии в механическую) и одновременно ознакомить читателя с такой биохимической классикой, как функции актина, миозина и актомиозинового комплекса. На этом примере отчетливо видно, что назрел вопрос о создании второй части этого учебника, посвященной физиологическим приложениям биохимии. Это в будущем можно было бы сделать, опираясь на курс лекций по физиологической химии, который был создан и на б [c.6]

    Биологические функции белков крайне разнообразны. Они выполняют каталитические (ферменты), регуляторные (гормоны), структурные (коллаген, фиброин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуногло-. булины, интерферон), запасные (казеин, альбумин, глиадин, зе-ин) и другие функции. Среди белков встречаются антибиотики и вещества, оказывающие токсическое действие. [c.9]

    Некая новая функция также может быть развита на основе предшествующих белков в совершенно новом функциональном направлении [7541. Как видно из табл. 9.4, сериновая протеаза является прототипом функциональной единицы, которая неоднократно использовалась при развитии сложных физиологических систем. Другой распространенный пример —белки актин и миозин, которые широко распространены в подвижных клетках и их содержимом [755, 756]. У более высокоразвитых организмов актин-миозиновыми системами осуществляются такие различные функции, как сокращение мышц, освобождение соединений-переносчиков в нервной системе, амебовидное движение белых кровяных телец и закупорка поврежденных кровяных сосудов путем создания сгустка. Кроме того, в некоторых биологических процессах, когда должна стабилизироваться или изменяться фэрма клеток, используется свойство актина образовывать самые разнообразные структуры за счет обратимой полимеризации [757]. [c.283]

    Мышечными назьшают все типы клеток, функция которых состоит в сокращении, хотя в других отношениях эти клеткн могут быть мало сходны между собой. Kai говорилось в главе Щ сократительный аппарат, включающий аж-тин и миозин и регулируемый ионами Са ,-это фундаментальная особенность эукариотических клегок вообще однако существует несколько различных путей особо мощного развития этого аппарата у специализированных клегок. У млекопитающих имеются четыре главных типа клеток, специально приспособленных для сокращения клетки скелетных мышц, сердечной мыш- [c.169]

    Поскольку ферменты являются веществами белковой природы, было даже высказано предположение, что вообще все белки живой протоплазмы обладают теми или иными ферментативными свойствами, т. е. являются в какой-то мере ферментами, быть может, с неизвестной еще функцией. Наличие определенных ферментативных свойств у некоторых важнейших тканевых белков, например у белка мышц миозина, на долю которого приходится около 35% всего белка скелетной мышцы, было показано экспериментально В. А. Энгельгардтом и М. Н. Любимовой (стр. 440). [c.132]


    Чем сложнее организм, тем более разнообразны функции, выполняемые белкО М. Белки составляют основу опорных тканей животных (костей, хрящей, сухожилий), выполняют покровные и защитные функции (волос, шерсть, рога, копыта), откладываются в виде питательных запасных веществ в семенах и в яйце. Некоторые белки являются переносчиками кислорода (гемоглобин крови), другие выполняют сократительные функции мышц (миозин). Все известные в настоящее время энзимы являются белками. Многие гормоны, антибиотики, многие яды змей и бактериальные токсины также относятся к белкам. [c.697]

    Белки являются одной из трех главных органических составных частей живой материи (две другие — жиры и углеводы), однако по своему значению и по разнообразию своих биологических функций они стоят совершенно обособленно. Белки составляют почти половину сухого вещества организма (около 70% веса нашего тела приходится на долю воды). Из общего количества белка в организме более одной трети находится в мышцах. Белок миозин образует волокна, которые являются основным сократительным элементом, обеспечивающим [c.64]

    Непосредственно окружающей хромосомы средой является ядро клетки. Чтобы понять, как функционируют хромосомы, необходимо изучить условия, существующие в ядре. Результаты деятельности хромосом обнаруживаются в цитоплазме. Цитоплазма каждого вида клеток специально приспособлена для выполнения своих специфических функций в цитоплазме мыщечных клеток содержится сократительный белок миозин в цитоплазме красных кровяных телец находится красящее вещество гемоглобин, переносящее кислород в цитоплазме клеток поджелудочной железы имеется пищеварительный фермент трипсин и т. д. В каждом типе клеток хромосомы действуют на специализированную цитоплазму. Для того чтобы такая система работала эффективно и слаженно, между ее частями должна существовать обратная связь, которая позволяла бы изменять активность хромосом в соответствии со специальными потребностями цитоплазмы. Доказательства существования такой обратной связи следует искать в химическом составе ядра. [c.120]

    Выполняют в клетках и в организме структурные функции. К этой группе относятся, например, коллаген (сухожилия, кости, соединительная ткань), миозин (мышцы), фиброин (шелк, паутина), кератин (волосы, рога, ногти, перья) [c.130]

    В процессе обмена веществ происходят конформационные изменения макромолекул, синтез и распад различных веществ, образование и потребление энергии, которые обеспечивают проявление физиологических функций организма. Изменение конформации основных белков мышц — актина и миозина, а также использование химической энергии АТФ лежат в основе сократительной функции мышц. Эти процессы наряду с механизмами энергообразования, биосинтеза белка, транспорта веществ и другими биохимическими реакциями существенно изменяются при воздействии различных физических нагрузок и в ходе адаптации к ним, что влияет на физическую работоспособность и состояние здоровья спортсмена. [c.24]

    Фибриллярные, или волокнистые, белки (от латинского с гова ЬгШа — волокно) состоят из макромолекул в виде тонких вытянутых нитей, обычно соединенных между собой. В эту группу входят белки, являющиеся составными частями кожи и сухожилий (коллаген, желатин), волоса и рога (кератин), мышц (миозины) и др. В организме они выполняют в основном механические функция, хотя некоторые из фибриллярных белков обладают и биологической активностью. Так, названный выше миозип является ферментом он расщепляет аденазинтрифосфорную кислоту (АТФ), которая обладает большим количеством энергии, выделяемой при ее расщеплении. [c.338]

    Некоторые свойства белков можно объяснить только в свете их функции, т. е. их вклада в более сложную деятельность. Одной из немногих систем, для которых удалось установить корреляцию между функцией белков и функцией органа, является скелетная мышца. Клетка мышцы активируется нервными импульсами (мембранно-направленными сигналами). В молекулярном аспекте мышечное сокращение основано на циклическом образовании поперечных мостиков за счет периодических взаимодействий между миозином, актином и Mg-ATP. Ионы Са и кальцийсвязывающие белки являются посредниками между нервными импульсами и эффекторами. Медиация ионами Са " ограничивает скорость реакции на сигналы включение — выключение и предохраняет от сокращений без сигнала. Напротив, отдельные осцилляции маховых мышц крылатых насекомых контролируются не ионами или подобными низкомолекулярными соединениями, а самими сократительными белками. Эго делает возможными очень быстрые периодические сокращения, которые, будучи инициированы (ионами Са +), протекают сами по себе. В заключение отметим, что исследования мышцы показывают, что в функционировании белка отчетливо проявляется связь между деталями молекулярного строения и деятельностью всего организма. [c.292]

    И структурные белки. Несомненно, что их роль не только механическая. Доказано, что структурным белкам присущи и каталитические функции. Эти функции особенно ярко проявляются у мышечного сократительного белка миозина. Исследования В. В. Эн-гельгардта и Н. А. Любимовой показали, что миозин ускоряет взаимодействие с водой (т. е. гидролиз) важнейшего аккумулятора энергии — аденозинтрифосфорной кислоты (АТФ). При этом получается аденозиндифосфорная кислота и фосфат. Энергия реакции используется мышцей, во время работы которой нити белка миозина сокращаются. Следовательно, этот белок выполняет двойную нагрузку он регулирует освобождение энергии и он же потребляет энергию, сокращаясь в процессе работы мышцы. Молекула миозина представляет собой длинную цепь — ее длина равна примерно 160 нм, а молекулярная масса достигает 600000, Кроме миозина, известны и другие мышечные белки (актин, тро-помиозин), Для того чтобы эти белки могли осуществлять обратимое сокращение, необходимо присутствие катионов металлов, вообще активно поглощаемых мышечными белками. Для работы мышцы требуются ионы калия, кальция, магния, нужен также запас фосфатов, используемых для синтеза АТФ, Связывание ионов металлов и водорода с ионными группами белков сильно влияет на взаимодействие участков цепи и приводит к изменению ее длины. Однако механизм мышечного сокращения более сложен и, по-видимому, связан с особым расположением нитей миозина и актина в мышце, позволяющих частицам актина при работе мышцы скользить вдоль нитей миозина. Из числа растворимых белков особенно важны альбумины и глобулины. [c.62]

    К группе миофибриллярных белков относятся миозин, актин и актомиозин—белки, растворимые в солевых средах с высокой ионной силой, и так называемые регуляторные белки тропомиозин, тропонин, а- и 3-актинин, образующие в мышце с актомиозином единый комплекс. Перечисленные миофибриллярные белки тесно связаны с сократительной функцией мышц. [c.648]

    Все рассказанное в этой главе втносилось к глобулярным белкам со свойственным им многообразием структур и функций. Гораздо менее разнообразные фибриллярные белки характеризуются специфическими особенностями строения и выполняют специальные функции. Это — структурные и сократительные белки. Первые играют роль опорных и защитных компонент, входя в состав сухожилий, хрящей, костей, связок и т. д. (коллагены), а также эпидермиса, волос, шерсти, рогов и т. д. (кератины). Вторые входят в состав рабочих веществ механохими-ческих систем, в частности мышц (миозин). [c.254]

    Один из основателей молекулярной биологии в СССР. В ходе изучения закономерностей нревраще-ния фосфорных соединений в процессах клеточного обмена веществ обнаружил (1931) связь клеточного дыхания и фосфорилирования. Открыл (1939) аденозинтри-фосфатазпую активность миозина. Объяснил (1949) механизм сопряжения процессов брожения и дыхания (эффект Пастера). Осуществлял систематические исследования по химии и технологии производства витаминов и аденозинтрифосфорной кислоты. Изучает (с 1960) структуру и функции нуклеиновых кислот и ферментов биосинтеза белков. Организовал (1972—1973) исследование по обратной транскрипции — проект Ревертаза . Много внимания уделяет методическим и философским проблемам молекулярной и теоретической биологии. [c.596]

    Биологические функции. Белки могут выполнять в живых организмах самые различные функции катализировать (ферменты) и регулировать (гормоны) биохимич. реакции входить в состав соединительной ткани (напр., коллаген) или мышц (актин, миозин) служить резервными питательными веществами (гранулы белка в цитоплазме) и др. Функции дезоксирибонуклеиновой к-ты — передача генетич. информации из поколения в поколение при клеточном делении. Этот Б. служит исходной матрицей при передаче информации внутри клетки. Рибонуклеиновая к-та также участвует в этом процессе, приводящем к синтезу специфич. белков клетки. Полисахариды могут служить резервными питательными веществами (напр., крахмал, гликоген), выполнять структурные функции (напр., целлюлоза полисахариды соединительной ткани), обеспечивать специфические свойства поверхности клеток (напр.1, антигенные полисахариды микроорганизмов) или защиг ту организма в целом (напрнмер, камеди и слизи растений). [c.128]

    Скелетные мышцы, равно как и многие немьш1ечные клетки, содержат два бел-ка-миозин и актин, образующие характерные фибриллярные или нитевидные структуры. По своей биологической функции они представляют собой не столько структурные белки, сколько белки, участвующие в зависимых от энергии процессах сокращения. [c.182]

    У высших организмов процессы биосинтеза белка регулируются значительно сложнее. Хотя каждая клетка позвоночного содержит полный геном данного организма, в клетке данного типа экспрессируется только часть структурных генов. Почти во всех клетках высших животньк присутствуют наборы основных ферментов, необходимые для реализации главных путей метаболизма. Однако клетки разных типов, например клетки мышц, мозга, печени, содержат свойственные только им структуры и выполняют только им присущие биологические функции, реализация которых обеспечивается наборами специализированных белков. Например, клетки скелетных мьшщ содержат огромное количество ориентированных миозиновых и актиновых нитей (разд. 14.14), тогда как в печени миозина и актина очень мало. Точно так же клетки мозга содержат ферменты, необходимые для синтеза большого числа различных веществ-медиаторов нервных импульсов, в то время как клетки печени этих ферментов вообще не содержат, Вместе с тем в печени млекопитающих присутствуют все ферменты, необходимые для образования мочевины, тогда как в других тканях этих ферментов нет и они не обладают способностью синтезировать мочевину (разд. 19.15). Кроме того, биосинтез разных наборов специализированных белков должен быть точно запрограммирован в последовательности и времени их появления в ходе строго упорядоченной дифференцировки и роста высших организмов. Пока нам сравнительно мало что известно о регуляции экспрессии генов в эукариотических организмах с их многочисленными хромосомами. Однако сегодня мы располагаем значительной информацией о регуляции синтеза белка у прокариот. К ней мы сейчас и перейдем. [c.954]

    Замечате.иьные работы Энгельгардта и Любимовой показали, что белки способны совмещать специфические функции, например сократительную функцию, с функциями каталитическими, необходимыми для осуществления этой специфической деятельности. Так, белок миозин является [c.132]

    Из всего того, что мы говорили, ясно, что элементар--ные химические акты совершаются в области прострапст--ва, размеры которого сопоставимы по порядку величины с размерами реагирующих групп и связей. Но почему же в таком случае ферменты обладают столь значительными размерами Что это принципиальная необходимость (для повышения избирательности реакции) или случайный отт бор такого рода систем в результате эволюции живой природы Ответа на этот вопрос наука сейчас дать не мо-может. Было установлено, например, что удаление большой белковой части молекул миозина и папаина не приводит к значительному изменению их ферментативной акг тивности. Значит, для выполнения каталитических функт ций ферменту нужна не вся белковая молекула, а лишь какая-то ее часть. Новый вопрос почему природа пошла по пути конструирования сложных каталитических молекул, а не ограничилась более разумным (с нашей точки зрения) вариантом — использовать ровно столько аминокислотных остатков, сколько это необходимо для нормального отправления своих биохимических функций И этот вопрос мы вынуждены оставить без ответа. Изт вестно только, что при полном расщеплении фермента [c.103]

Фиг. 43. Скорректированная площадь шлирен-пика как функция времени для миозина. Фиг. 43. Скорректированная площадь шлирен-пика как <a href="/info/870848">функция времени</a> для миозина.
    Белки, функции. По функциональному признаку белки можно раздедйть на ферменты (РНК-азы, цитохромы, трипсин и др.), запасные белки (казеиноген, зеин, глиадин и др.), транспортные (гемоглобин, церулоплазмин и др.), сократительные (миозин, актин и др.), защитные (антитела, фибриноген и др.), токсины (дифтерийный токсин, змеиные яды и др.), гормоны (инсулин, адренокортикотропный гормон и др.), структурные белки (гликопротеиды, а-керотин, фиброин, мукопротеиды и др.). [c.17]

    Мало изучены Г. животных органов и тканей, составляющие по данным электрофоретич. анализа ок. 90% всех извлекаемых из них белков. С одним из Г. мышцы — миозином — связана их сократительная функция. Значительная часть белков протоплазмы растений также относится к Г. Растительные Г. подразделяются на растворимые в нейтральных солях, растворимые в разб. этиловом спирте и растворимые в разб. к-тах и щелочах. [c.488]

    Ферменты представляют собой вещества или чисто белковой структуры, или протеиды — белки, связанные с небелковой простетической группой. Число уже известных ферментов очень велико. Считают, что одна клетка бактерии использует до 1000 разных ферментов. Однако лишь для немногих установлено строение. Примерами чисто белковых ферментов могут служить протеолитические ферменты пищеварения, такие, как пепсин и трипсин. Известны случаи, когда один и тот же белок несет в организме и структурную и ферментативную функцию. Примером служит белок мышц миозин, каталитически разлагающий аденозинтрифосфат— реакция, в данном случае дающая энергию сокращения мышцы (В. А. Энгельгардт, М. Н. Любимова). [c.698]


Смотреть страницы где упоминается термин Миозин функции: [c.79]    [c.313]    [c.170]    [c.117]    [c.125]    [c.448]    [c.488]    [c.95]    [c.241]    [c.322]    [c.204]    [c.35]    [c.126]   
Молекулярная биология клетки Том5 (1987) -- [ c.148 ]

Мышечные ткани (2001) -- [ c.208 ]




ПОИСК





Смотрите так же термины и статьи:

Миозин



© 2025 chem21.info Реклама на сайте