Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура белковой части

    Плоская структура монослоя белка на электроде приводит к тому, что электрохимические реакции восстановления коэнзим-ных групп в составе монослойной пленки протекают при потенциалах, которые приближаются к редокс-потенциалу свободных групп. Было также обнаружено, что после образования монослоя происходит дальнейшая адсорбция белковых макромолекул с образованием второго и последующих слоев, причем эта адсорбция протекает уже обратимо с сохранением нативной структуры белка. Часть белковых макромолекул, внедренных в поры монослоя, также сохраняет нативную форму, и они могут участвовать в виде нативных молекул в электрохимических реакциях. [c.237]


    Для получения более точного представления о структуре белков часто применяют неполный гидролиз белка. Неполный гидролиз можно осуществить несколькими путями 1) уменьшением продолжительности гидролиза 2) понижением концентрации гидролизующего агента 3) проведением гидролиза при пониженной температуре [5]. [c.24]

    Рентгеновские лучи имеют длины волн, соизмеримые с межатомными расстояниями. При изучении структуры белков часто используется рентгеновское излучение с длиной волны 0,1542 нм, возникающее при облучении электронами атомов меди. При попадании рентгеновских лучен на атом происходит их рассеянне (отражение), пропорциональное числу электронов, окружающих атом. Таким образом, дифракция рентгеновских лучей тяжелыми атомами, обладающими более высокими атомными номерами, гораздо интенсивнее, чем легкими атомами. Любой кристалл можно рассматривать как трехмерный образец, в котором электронная плотность наиболее высока вблизи центров атомов и характеризуется низкими значениями или близка к нулю между атомами. [c.185]

    Хромосомные белки Часть структуры хромосом Гистоны [c.259]

    Примером подобных процессов служит денатурация белков. В этой реакции вследствие разрыхления структуры белка и разрыва при активации части солевых мостиков между кислотными и основными группами энтропия при активации возрастает (AS >0), и хотя энергия активации велика, AGI мало, а поэтому скорос ъ реакции значительна. [c.128]

    Несколько молекул белка, одинаковых или разных (субъединиц), могут соединяться друг с другом так возникает четвертичная структура белка. Так, например, молекула гемоглобина состоит из четырех субъединиц под действием мочевины она расщепляется на две неидентичные части, которые после удаления реагента могут вновь соединиться, воссоздавая нативный гемоглобин. Другой белок —вирус табачной мозаики, состоит из более чем двух тысяч субъединиц (рис. 68). [c.642]

    В пространстве закрученная в спираль полипептидная цепь образует третичную структуру белка (рис. 3). Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, например, между атомами серы часто образуется дисульфидный мостик (—5—8—), между карбоксильной группой и гидроксильной группой имеется сложноэфирный мостик, а между карбоксильной группой и аминогруппой может возникнуть солевой мостик. Для этой структуры характерны и водородные связи. Третичная структура белка во многом обусловливает специфическую биологическую активность белковой молекулы. [c.19]


    Для построения пространственной структуры белка пептидные цепи должны принять определенную, свойственную данному белку конфигурацию, которая закрепляется водородными связями, возникающими между пептидными группировками отдельных участков молекулярной цепи. По мере образования водородных связей пептидные цепи закручиваются в спирали, стремясь к образованию максимального числа водородных связей и соответственно к энергетически наиболее выгодной конфигурации. Но образованию правильной спирали часто мешают силы отталкивания или притяжения, возникающие между группами аминокислот, или стерические препятствия, например за счет пирроли-диновых колец пролина и оксипролина, которые заставляют пептидную цепь резко изгибаться и препятствуют образованию спирали на некоторых ее участках. Далее отдельные участки макромолекулы белка ориен- тируются в пространстве, принимая в некоторых случаях достаточно [c.373]

    Вторичная структура белка — форма полипептид-ной цепи в пространстве. С помощью рентгеноструктурного анализа и других физических методов исследования установлено, что полипеп-тидные цепи природных белков находятся в скрученном состоянии — в виде спирали. Спиральная структура удерживается водородными связями, возникающими между группами СО и NH аминокислотных остатков соседних витков спирали (на рис. 18.1, а обозначены пунктиром). Подобная вторичная структура получила название а-спирали (рис. 18.1, а). Водородные связи в ней направлены параллельно длинной оси спирали (а-спирали чередуются с аморфными частями). [c.352]

    Полинг Лайнус Карл (1901-1997), американский ученый, крупнейший специалист в области квантовой механики и строения молекул, теории химической связи, иммунохимии, структуры белков и молекулярной генетики. Иностранный член Российской Академии н к, один из инициаторов Пагуошского движения ученых за мир. Часть его книг переведена на русский язык Природа химической связи (М., Госхимиздат, 1947), Общая химия (М., Мир 1974) и др. [c.275]

    С-ЯМР применяется и для исследования структуры белков. На рнс. 2-45 показана часть спектр а цитохрома с (гл. 10  [c.190]

    Биохимический полиморфизм, видимо, намного значительнее, чем предполагалось несколько лет назад. В первой части подчеркивались технические трудности при электрофоретическом определении изменчивости, которые, по существу, являются отражением степени выявленной генетической изменчивости. Реальная оценка этого разнообразия возможна при сопоставлении данных электрофореза с данными о первичных структурах белков. [c.61]

    Итак, можно констатировать, что у всех исследований, направленных на разработку эмпирических предсказательных алгоритмов трехмерных структур белка, неадекватными изучаемому явлению оказываются и положенные в их основу спиральная концепция Полинга-Кори, и гидрофобная концепция Козмана об организации нативной конформации, и используемые методы, и выбранная стратегия решения задачи. Такой путь следует считать бесперспективным, так как он в принципе, а не из-за сложности проблемы или недостатка экспериментального материала, не может привести к конечной цели - априорному количественному описанию геометрии и конформационных возможностей остатков в белковой глобуле. Не может играть он и вспомогательную роль, например, в получении промежуточных данных о структуре или ее отдельных частей, которые были бы полезны в последующем уточнении. Бесперспективность эмпирического подхода подтверждают результаты всех предпринятых за последние три десятилетия попыток следовать ему. [c.81]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]


    Шейпы е я/ дипептидных фрагментов встречаются одинаково часто в трехмерных структурах белков (у 50 базовых белков, использованных [c.230]

    В самом деле, расчет Arg - ys привел к набору низкоэнергетических конформаций, на основе которых будет проводиться дальнейшее исследование БПТИ. В этом наборе все варианты содержат остаток Gly в более предпочтительном для свободного фрагмента состоянии с ф = 126° и У = -84°. С помощью используемой процедуры минимизации невозможно прийти к иному состоянию, отвечающему второй потенциальной яме. Для этого нужно задать соответствующее нулевое приближение, что требует знания потенциальной поверхности. Пример с Gly показывает, что исследование у наиболее предпочтительных конформаций сечений потенциаль-Яой поверхности должно явиться составной частью априорного расчета Трехмерной структуры белка. Таким образом, структурное исследование Arg - ys -участка БПТИ выявило девять низкоэнергетических и в принципе перспективных для последующего анализа конформаций, принадлежащих шейпам е/де/г. и (табл. IV.8). [c.441]

    Высоко оценивая значимость кристаллографических и иных опытных данных о белках, следует тем не менее иметь в виду их принципиальную недостаточность в решении ряда общих и многих конкретных вопросов структурной и структурно-функциональной организации. Поэтому теоретический конформационный анализ неизбежно должен стать неотъемлемой составной частью всех исследований морфологических и биологических свойств белковых молекул. Для этого необходимо, чтобы расчетный метод был бы менее трудоемким и более быстрым, чем изложенный в книге метод априорного расчета. Надежность существующего метода подтверждается хорошим совпадением результатов расчета с опытными данными. Точность рассчитанных априорно координат атомов нейротоксина II и панкреатического трипсинового ингибитора не уступает точности рентгеноструктурного анализа белков с разрешением -2,0 А. О его скоростных качествах можно судить по следующему примеру. Так, полный расчет трехмерной структуры белка, имеющего -100 аминокислотных остатков, проводится двумя-тремя сотрудниками, владеющими методом, с помощью двух современных персональных компьютеров за -4 месяца, [c.591]

    Третичная структура белка для глобулярных белков представлена сложной структурой, сходной с клубком или глобулой. Структура в этой глобуле поддерживается водородными, ионными, гидрофобными связями. Иногда одна часть структуры представлена спиралью, другая -складчатым листом, чередующимся с линейной последовательностью АК. Фрагменты такой структуры, имеющие определенное строение, называют доменами (например, спиральный домен). Третичная структура фибриллярных белков - более сложная спираль (двойная или тройная), иногда ее, например в молекуле коллагена, называют суперспиралью. [c.25]

    В большом числе случаев для функционирования белков и нуклеиновых кислот необходимо, чтобы несколько полимерных цепей были соединены в единый комплекс. В Случае чисто белковых образований такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц. Субъединичная структура белков часто фигурирует в научной литературе как четвертичная структура, т.е. как уровень организации, следующий за третичной структурой. Нуклеиновые кислоты с комплементарными последовательностями нуклеотидов образуют двуспиральные структуры. При определенных структурных особенностях могут образовываться и структуры, содержащие три цепи,— тре.хспиральные структуры. Наконец, многие функционально значимые образования содержат как белки, так и нуклеиновые кислоты такие образования называют нуклеопротеидами. В основе образования нуклеопротеидов лежат высокоспецифичные взаимодействия между соответствующими полипептидными и полинуклеотидными цепями, т.е. способность молекул биополимеров к взаимному узнаванию. [c.102]

    В качестве моделей при изучении свойств и структуры белков часто используют полиаминокислоты, поэтому и в данном случае целесообразно начать с хроматографии модельных соединений, именно олигопептидов. Здесь следует назвать работу Стюарта и Штаманна [4] по фракционированию гидролизатов поли-1-лизина па карбоксиметилцеллюлозе в Ка-форме. Фракционирование полиаминокислот на индивидуальные компоненты уже само по себе является важной проблемой, не говоря уже о том, что решение этой задачи позволит судить о молекулярновесовом распределении в полиаминокислоте и о самом механизме полимеризации. [c.182]

    Водородные связи могут возникать как между отдельными полипептидными цепями, так и между звеньями одной цепи. Поскольку энергия Н-связи равна 1,4 ккал моль, то чем больше таких связей образуется внутри молекулы, тем ниже будет ее энергия и тем выше ее стабильность. Это приводит к тому, что полипёптидные цепи стремятся образовывать упорядоченные жесткие спирали с максимально возможным числом водородных связей. Такая упорядоченная спиральная структура полипептидной цепи, обусловленная внутримолекулярными водородными связями, называется вторичной структурой белков. Часто ее еще называют внутримолекулярной кристаллизацией, ибо такая, молекула действительно напоминает кристалл (наличие точки плавления для вторичной структуры, большая жесткость и упорядоченность). Однако упорядоченная спираль с внутримолекулярными водородными связями не является единственной конфигурацией полипептидных цепей белков. Наряду с ней известна структура, в которой вытянутые полипептидные цепи связаны друг с другом межмолекулярными (межцепочечными) водородными связями.  [c.91]

    Водородная связь, o ooeimo внутримолекулярная, меняет многие химические свойства. Например, именно водородной связью объясняется повышение концентрации енола в некоторых таутомерных равновесиях (разд. 2.20). Водородная связь влияет на конформацию молекул (см. гл. 4) и часто играет существенную роль в определении скоростей реакций [13]. Эта связь такл е важна для регулирования трехмерной структуры белков и нуклеиновых кислот. [c.116]

    Еще несколько лет назад полагали, что а-спирали вторичных структур белка соединяются сбок о бок , одна рядом с другой — субъединица белка здесь представляет собой пласт полипептидных спиралей, а не кабель или пучок. Пласты наслаиваются один на другой, соединяясь в основном водородными связями, и образуют сферическую макроструктуру (ее часто называют глобулой или макроглобулой). Так, по Пальмеру, яичный альбумин состоит из четырех пластов субъедцгшп, в каждом из которых находится по 96 аминокислотных остатков, расположенных в восьми полипептидных цепочках по 12 аминокислот (рис. 85). Пласты обращены друг к другу своими гидрофобными либо гидрофильными частями. [c.202]

    Многие полипептиды и белки исследовались с помощью рептгепос1руктурного анализа. При этом были подтверждены некоторые характерные особенности их структуры. Наиболее часто встречаются два типа организованной вторичной структуры, хотя нередко молекулы белков имеют более беспорядочное строение. В а-.форме полиамидная цепь свернута в спираль, в [c.301]

    Третичная структура белков, обусловленная взаимодействием боковых цепей аминокислот, не приводит к такой высокой упорядоченности структуры, как в предыдущем случае. Помимо водородных связей важным фактором стабилизации третичной структуры является образование дисульфидных связей. Молекула инсулина имеет три таких дисульфидных мостика, два из которых соединяют две отдельные полипептидные цепи в молекулу. Третичная структура часто придает белковой молекуле такую конформацию, при которой гидрофильные группы (ОН, ЫНз, СО2Н) расположены на поверхности молекулы, а гидрофобные группы (алкильные и арильные боковые цепи)[ направлены внутрь, к центру молекулы. [c.302]

    Биологическая активность белков нередко тесно связана с высокой организацией структуры, и живые организмы синтезируют белки требуемой конформации, которая часто оказывается метастабильной (т. е. из всех возможных структур не самой устойчивой). Под влиянием нагревания, крайних значений pH или многих химических реагентов белки часто теряют свою биологически необходимую конформацию, превращаясь в случайные неорганизованные структурные единицы и утрачивая биологическую активность. Такой процесс называется денатурацией. Наиболее известный пример — изменение структуры яичного белка при нагревании и структуры мяса в процессе приготовления. В последнем случае кулинарная обработка приводит к значительному облегчению процесса переваривания мяса, поскольку при денатурации освобождаются белковые связи, которые в сыром мясе труднодоступны для протеолити-ческих ферментов пищеварительного тракта. При такой денатурации в результате развертывания белковых цепей обнажаются гидрофобные группы, в обычном состоянии направленные внутрь центральной части белковой молекулы. Взаимодействие освобожденных гидрофобных участков рядом расположенных молекул вызывает коагуляцию денатурированного белка. [c.303]

    Гидролиз белков, по существу, сводится к гидролизу полипептид-ных связей, К этому же сводится и переваривание белков. При пищеварении белковые молекулы гидр<злизуются до аминокислот, которые, будучи хорошо растворимы в водной среде, проникают в кровь и поступают во все ткани и кл(тки организма. Здесь наибольшая часть аминокислот расходуется на синтез белков различных органов и тканей, часть - на синтез гормонов, ферментов и других биологически важных веществ, а остальные лужат как энергетический материал. Развитие новых экспериментальных методов исследования в органической химии обусловило успехи в изучении структуры белка, В настоящее время раапичают первичную, вторичную и третичную структуры белковой молекулы. [c.420]

    Для фибриллярных белков характерна спиральная структура с периодом идентич- ности примерно 7а (фиброин). Белки со кскладчатой структурой (кератин) состоят, по-видимому, из вытянутых цепей, связанных друг с другом межмолекулярными водородными связями. Глобулярные белки часто содержат участки, в которых остатки аминокислот частично входят в спиральную конформацию и частично — в неспирализованные сегменты. Измерение содержания спиральных участков на основании изменения вращательной способности при денатурации было применено впервые для полиаминокислот (см. 31,35) и позднее перенесено на белки. Второй метод основан на скорости изотопного обмена вторичного амидного водорода на дейтерий. Обмен в спирализованной ча-сти. молекулы идет медленнее, чем в беспорядочно свернутых сегментах (Блу, 1953—1961 Линдерштрем-Ланг, 1955). [c.710]

    ЧЕТВЕРТИЧНАЯ СТРУКТУРА белка, размещение в пространстве субъединиц, образованных из отд. полипептидных цепей совокупность контактов между субъединицам (без учета их геометрии), включающих гидрофобные контакты, водородные связи (нередко образующие систему, близкую к Р-структуре) и электростатич. взаимодействия. Прочность этих контактов различна иногда для их диссоциации достаточно изменения pH среды или ионной силы р-ра, одпако часто требуется полное разрушение третичной структуры субъединиц. Ч. с. характерна не для всех белков. В ее образовании чаще всего участвуют 2 или 4 субъединитц) , иногда — до 12 (понятие <Ч. с. пе распространяемся на надмолекулярные образования — мультиферментннле комплексы и протяженные структуры, напр, оболочки (liaron). [c.688]

    B. ., образуемые в-вом в жидкой фазе, при кристаллизации обычно сохраняются (связи не разрываются). Кристаллич. структуры имеют вид цепей (напр., HF, метанол, Р-модификация щавелевой к-ты, РЬНРО ), плоских двухмерных слоев (напр., формамид, борная к-та, а-модифика-ция щавелевой к-ты), пространств, трехмерных сеток (лед, КН2РО4, L-глутаминовая к-та, ацетамид), спиральные структуры (белки, нуклеиновые к-ты). Взаимная ориентация фрагментов RAH и BR в кристалле отличается от их расположения в газовой фазе или р-ре, поскольку она должна обеспечивать миним. своб. энергию всей системы, а не только комплекса. Часто оптимальная с точки зрения прочности B. . ориентация фрагментов реализуется в структуре с низким коэф. упаковки пример-лед, к-рый кристаллизуется в тетраэдрич. решетку с коэф. упаковки 0,4. [c.404]

    Способ укладки пептидной цепи (образование спирали или -структуры) часто называют вторичной структурой белка. Дальнейшая укладка молекулы, основанная на бзаимодемствин групп, далеко отстоящих друг от друга вдоль цепи, приводит к формированию третичной структуры. Агрегация мономерных белковых субъединиц в оли-Ьомеры (гл. 4) определяет четвертичную структуру белка. [c.94]

    При разделении,гликопротеинов плазмы электрофорезом получают активную фракцию этих белков, состоящую из 5 компонентов с М 11 ООО + 32 000. Все компоненты содержат только аланин и треонин, структура углеводной части соответствует дисахариду о-галактозил-о-К-ацетилгалактозамину. [c.429]

    В биосистеме молекула Н2П находится преимущественно в неполярном окружении (коллоидный раствор). Модельные исследования [98, 100] показали, что в растворах ПАВ порфирины являются центрами образования неполярной части мицеллы. Взаимодействие первой и второй экранирующих сфер белкового комплекса осуществляется за счет гидрофобного взаимодействия периферических заместителей с неполярным белковым окружением (псевдо-сольватная оболочка [10]) и обеспечивается пространственной "подстройкой" сольватационных центров. В этом состоит роль Н2П в поддержании третичной структуры белка в белковых комплексах. Можно полагать, что происходящие при этом сильные конформационные изменения связаны в первую очередь с перестройкой периферии молекулы биопорфирина, а не с искажением самого макроцикла [101]. Существует иная точка зрения, касающаяся наличия у металлокомплексов порфиринов некоторой конформационной гибкости. Согласно ей, именно изменение степени искажения макроцикла в комплексе, а значит, и его физикохимических свойств, вызываемое конформационной перестройкой третичной структуры белка, является залогом их биологической активности in vivo [102-104]. [c.357]

    Эти разные белки находят у большинства других видов бобовых. Преобладающая часть семян бобовых растений содержит антитрипсиновые вещества, гемагглютинины [56, 69, 70, 93, 96] и липоксигеназы [36 . Трипсиновые ингибиторы — это белки с молекулярной массой от 8000 до 25 ООО Да [70[ и с повышенным содержанием цистеина. Каждый растительный вид содержит, как правило, несколько изоформ ингибиторов три у конских бобов, девять у гороха. Гемагглютинины представляют собой в большинстве случаев гликопротеины, содержащие 1—5 % углеводов, с молекулярной массой от 50 ООО (горох, конские бобы) до 120 ООО Да (соя). Эти белки, часто представленные в форме нескольких изолектинов, имеют четвертичную структуру, число субъединиц которой колеблется от двух (конские бобы) до четырех (соя, фасоль, горох). Субъединицы состоят из двух полипептидных цепей, одна из которых с низкой молекулярной массой (а), другая — с более высокой (Р). У гороха цепи аир имеют молекулярную массу соответственно 7000 и 17 ООО Да [69]. [c.167]

    Первые работы по приготовлению текстурированных растительных белков были проведены в США под давлением социальных групп, которые по религиозным соображениям не употребляли мяса. Так, Келлог [53] в рамках секты Адвенисты седьмого дня разработал рецептуру пищевого продукта, одновременно привлекательного внешне и питательного, в качестве заменителя мяса. Процесс изготовления состоял в смешивании клейковины, казеина и растительного масла. После растирания и размешивания проводился прогрев массы для закрепления структуры. Большая часть проводившихся в дальнейшем работ касалась приготовления продуктов питания на структурной основе из клейковины, белков молока и продукта, обогащенного крахмалом. [c.528]

    В последующих главах рассматриваются результаты конформацион-1 0го анализа большой серии природных олигопептидов. Их пространст- енное строение практически полностью определяется взаимодействиями ежду близко расположенными в цепи остатками, и поэтому они представляют собой естественные объекты исследования средних взаимодействий. Здесь нельзя было ограничиться анализом единичных примеров в силу по крайней мере двух обстоятельств. Во-первых, изучение конформационных возможностей природных олигопептидов является, как станет ярно позднее, самым ответственным и сложным, но в то же время 1 иболее интересным этапом на пути к априорному расчету трехмерных структур белков. Очевидно, понимание пространственного строения и механизма спонтанной, быстрой и безошибочной укладки белковой последовательности в нативную конформацию невозможно без установления инципов пространственной организации эволюционно отобранных низко- лекулярных пептидов. Между природными олиго- и полипептидами нет четко очерченных границ, и количественная конформационная теория лее простых молекул является естественной составной частью конформационной теории более сложных соединений той же природы. Во-вторых, Й1ание пространственной организации и динамических конформационных свойств природных олигопептидов - гормонов, антибиотиков, токсинов и т.д. - необходимо -вакже для изучения молекулярных механизмов узнавания, действия и регуляции биосистем, выявления структурно-функциональных особенностей пептидов и белков. [c.233]

    Техника "отжига" в конформационном анализе пептидов и белков часто используется в комбинации с методом молекулярной динамики, в котором температура вводится в расчет посредством кинетической энергии. Самый простой и наиболее распространенный алгоритм этого метода был предложен X. Берендсеном и соавт. [189]. Сравнение его с другими алгоритмами метода молекулярной динамики вьшолнено в работе [190]. Комбинированный метод динамического "отжига" применяется в анализе более или менее сложных пептидов, однако непременно с использованием экспериментальных ограничений, получаемых от рентгеноструктурной кристаллографии и ЯМР [191-194]. Расчет, таким образом, сводится к уточнению уже известной структуры или выбору из небольшого числа предполагаемых вариантов. В разработанном М.Сноу подходе привлекаются данные о гомологии белков [195, 196]. Метод "отжига" широко используется, правда с переменным успехом, в конформационном анализе простых пептидов [197-200], причем наиболее популярным объектом является энкефалин, конформационно достаточно простой эндогенный пентапептид, содержащий два остатка Gly [200-206]. Дж. Хиго и соавт. [207] предложили процедуру длительного "отжига" в комбинации с методом взвешенного набора переменных [208] и минимизацией энергии по вторым производным, позволяющим судить об анизотропии потенциальной поверхности. Авторы использовали процедуру для расчета конформационных состояний пептидных петель в белках, структуры которых известны [209]. [c.244]


Смотреть страницы где упоминается термин Структура белковой части: [c.103]    [c.193]    [c.14]    [c.151]    [c.588]    [c.108]    [c.189]    [c.423]    [c.507]    [c.524]    [c.524]    [c.526]    [c.560]   
Смотреть главы в:

Гликопротеины Том 2 -> Структура белковой части




ПОИСК





Смотрите так же термины и статьи:

Белок белки структура

Структура белка



© 2024 chem21.info Реклама на сайте