Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Актиновые филаменты и клеточный кортекс

    Актиновые филаменты и клеточный кортекс [17] [c.274]

    В эукариотических клетках имеется особый кортикальный слой акт новых филаментов лежащий непосредственно под плазматической мембраной. В целом он представляет собой однородную трехмерную сеть обладающую благодаря поперечным сшивкам, свойствами геля Вместе с тем кортикальные актиновые филаменты образуют и ряд специализированных структур. Например, пучки актиновых филаментов, находящихся в комплексе с миозином, прикрепляются к плазматической мембране и обеспечивают клетку структурами, способными к сокращению. В других участках контролируемая полимеризация актиновых филаментов на их плюс-концах способна выпячивать плазматическую мембрану наружу, создавая подвижные выступы клеточной поверхности. Разнообразие структур кортекса и выполняемых ими функций за-висит от обширного спектра актин-связывающих белков, которые сшивают актиновые филаменты в рыхлый гель, объединяют их в жесткие пучки, движутся по актиновым филаментам, создавая механическое усилие, или прикрепляют их к плазматической мембране. Некоторые из белков, выполняющих эту последнюю функцию, прикрывают плюс-концы актиновых филаментов, контролируя тем самым их полимеризацию и деполимеризацию в клетке. Именно этим белкам, как полагают, принадлежит ключевая роль в сложных движениях клеточной поверхности, например при фагоцитозе или при перемещении клеток по субстрату. [c.292]


    Во многих эукариотических клетках актин содержится в больших количествах, составляя нередко до 5% и более от общего белка клетки. Хотя он раснределен по всей цитоплазме, в большинстве животных клеток существует особенно густая сеть из актиновых филаментов и ассоциированных с ними белков под самой плазматической мембраной. Эта сеть образует клеточный кортекс, который придает механическую прочность поверхностному слою клетки и позволяет клетке изменять свою форм> и двигаться. Структура кортекса может быть различной у разных клеток и даже в разных участках одной и гой же клетки. Иногда это плотная трехмерная сеть из поперечносшитых актиновых филаментов, в которую не могут проникать органеллы и другие крупные частицы из прилежащих слоев црггоплазмы (рис. 11-29) в других случаях кортекс заметно тоньше и больше похож на двумерную структуру. В одни участках животных клеток небольшие пучки актиновых филаментов, отходящие от наружной стороны кортекса, заполняют выступы клеточной поверхности, тогда как в других актиновые филаменты втягивают мембрану внутрь. Плазматическая мембрана настолько тесно связана с кортикальным актиновым слоем, что для некоторых целей лучше считать их единым функциональным образованием. [c.274]

Рис. 11-29. Актиновый кортекс на электронной микрофотографии тонкого среза лейкоцита. Хотя цитоплазму заполняют гранулы различного тина в тонкий слой под самой плазматической мембраной (кортекс) они не попадают. Кортекс содержит сеть актиновых филаментов и связанных с ними белков, определяющих движения клеточной иоверхности. (С любезного разрешения Dorothy Bainton.) Рис. 11-29. <a href="/info/1413039">Актиновый кортекс</a> на <a href="/info/73091">электронной микрофотографии</a> <a href="/info/3785">тонкого среза</a> лейкоцита. Хотя цитоплазму заполняют гранулы <a href="/info/1571554">различного тина</a> в <a href="/info/3785">тонкий слой</a> под самой плазматической мембраной (кортекс) они не попадают. Кортекс содержит сеть <a href="/info/1339102">актиновых филаментов</a> и связанных с ними белков, определяющих <a href="/info/615460">движения клеточной</a> <a href="/info/197371">иоверхности</a>. (С любезного разрешения Dorothy Bainton.)
    Сходные белки содержатся в кортексе многих клеток позвоночных, фрагмонтирующие белки активируются при гаких концентрациях Са (около 10 М). которые создаются в цитозоле лишь на короткое время как полагают, они служат посредниками в реакциях клеточного кортекса на внешние сигналы. Папример, когда фагоцотирующий лейкоцит вступает в контакт с микроорганизмом, сеть актиновых филаментов в этом участке кортекса распадается, что позволяет поверхностному слою цитоплазмы окружить и поглотить микробную клетку. К механизмам, лежащим в основе таких движений, мы вернемся несколько позже. [c.276]


    До сих пор мы обходили вопрос, который является основным для понимания структуры и функций актинового кортекса какова природа связи актиновых филаментов с плазматической мембраной Полагают, что находящиеся в мембране снециальные белки служат центрами организации для актиновой сети. Силы, возникающие в кортикальном слое актиновых нрггей и ответственные за движения клеточной иоверхности, должны передаваться на мембрану именно через эти или другие мембранные белки. О том, каковы эти белки и как они взаимодействуют с актином, мало что известно. Очевидно, однако, что есть но крайней мере три функциональных типа присоединения актина к плазматической мембране первый главным образом придает мембране прочность и определяет ее форму второй дает возможность актиновым филаментам втягивать участки мембраны внутрь и наконец, третий тин-тот. при котором актиновые филаменты вызывают быстрое выпячивание участков мембраны наружу Рассмотрим но порядку каждый из этих типов. [c.278]

    Внутри каждой кишечной микроворсинки находотся жесткий пучок из 20-30 параллельных актиновых филаментов, тянущихся от ее верхушки к основанию, где они погружены в клеточный кортекс. Все филаменты в пучке ориентированы плюс-концами наружу (от клетки) и удерживаются вместе на одинаковых расстояниях друг от друга несколькими актин-связывающими белками, в частности фимбрином и фасцином (рис. 11-35). В отличие от филамина и других сшивающих актиновые филаменты белков, молекулы которых гибки и объединяют филаменты в рыхлую сеть, эти актин-связываюшие. белки относительно невелики и компактны, причем полипептидная цепь такого белка образует два [c.279]

    Можно было бы думать, что многие из производимых клеточным кортексом движений, как, например, фагоцитоз или локомоция, зависят от динамического равновесия между свободным (неполимерным) актином и актиновыми филаментами. Однако но сравнению со взрывными изменениями, происходящими в активированном спермин, изменения в полимеризации актина при этих движениях обычно слишком малы и краткоеременны, чтобы их легко было обнаружить. Однако на важную роль нолимеризации и деполимеризации актина в таких движениях указывают эффекты ряда веществ, которые предотвращают изменения в состоянии актина и тем самым нарушают его двигательную функцию. Например, цитохалазины (рис. 11-46)-семейство метаболитов, выделяемых различными плесневыми грибами,-подавляют многие формы подвижности клеток позвоночных, включая локомоцию, фагоцитоз, цитокинез, образование ламеллоподии и микрошипов и сворачивание энителиальных пластов в трубки. В то же время эти вещества не влияют на расхождение хромосом в митозе, которое зависит в основном от функции микротрубочек веретена, и на мышечное сокращение, в кото- [c.289]

    По аналогии с мышцей - наиболее изученной двигательной системой на основе актина - можно было бы ожидать, что вызывающие сокращение силы в кортексе создаются при взаимодействии актиновых и миозиновых филаментов Однако против этой возможности говорят эксперименты с клеточным слизевиком В1с(уоз1еИит сИзсо1с1еит (разд. 14.3.1). Удалось получить таких мутантов этого слизевика, у которых нормальный ген фибриллярного миозина был заменен искусственно модифицированным геном. В этом гене был вырезан длинный участок, кодирующий белок (см. разд. 4.6.14), и в результате эти мутанты были лишены миозиновых нитей. Неудивительно, что у мутантных клеток не могло формироваться сократительное кольцо, и поэтому они превращались в гигантские многоядерные клетки, которые лишь изредка делились, просто разрываясь надвое Тем не менее эти клетки сохраняли способность к миграции и даже к хемотаксической реакции на сАМР (разд. 14.3.2), хотя оба процесса были заметно нарушены. По-видимому, координированное перемещение клетки, так же как и натяжение кортекса, не зависит всецело от биполярных миозиновых филаментов возможно, что натяжение может создаваться эластичной сетью актиновых филаментов (действующей подобно резиновой нленке) или другими стягивающими силами, источником которых могли бы быть, например, процессы разборки актиновых филаментов или мини-миозин [c.326]

    Как уже говорилось в гл. 6, все животные клетки непрерывно заглатывают небольшие участки своей плазматической мембраны и возвращают их обратно на клеточную поверхность в процессе, получившем название эндоцитозного цикла (разд. 6.5), Есть данные о том, что у ползущих но субстрату поляризованных клеток кусочки мембраны переходят внутрь со всей поверхности клетки, а возвращаются главным образом на передний край. По-видимому, такая асимметрия эндоцитозного цикла мигрирующей клетки помогает продвижению переднего края (разд 6.5.13). Вероятно, возврат перешедших в цитоплазму участков мембраны на передний край поляризованной клетки зависит от ориентироваппых микротрубочек и актиновых филаментов те и другие способны при участии вспомогательных белков направлять активный транспорт мембранных пузырьков в сторону своих плюс-концов (разд. 11.1.10 и 11.4.9). Таким образом, в мигрирующей клетке есть по меньшей мере два типа направленных движителей , обеспечивающих ее локомоцию 1) механизм на основе актиновых филаментов в клеточном кортексе - он выдвигает ламеллоподии и создает кортикальное натяжение и 2) механизм, находящийся в глубине клетки, для которого нужны ориентированные микротрубочки или актиновые филаменты (или те и другие),- он обеспечивает активный транспорт мембранных пузырьков к переднему краю клетки (рис. 11-85). [c.327]


    Актиновые филаменты, микротрубочки, промежуточные филаменты и связанные с ними белки способны к самопроизвольной сборке в сложную сеть белковых нитей, структурирующих цитоплазму. Цитоскелет играет ведущую роль в определении формы и полярности клеток, а также в их подвижности. Когда. животная клетка движется, пучок актиновых филаментов периодически выталкивает наружу ламеллоподии и микрошипы на одной из сторон клетки (переднем крае) и растягивает клеточный кортекс, поляризуя клетку, что помогает ей продвигаться вперед. Эта полярность поодерживается с помощью микротрубочек или актиновых филаментов, которые направляют поток материала плазматической мембраны к переднему краю клетки. [c.332]

Рис. 13-66. Опыт, демонстрирующий влияние положения веретена на плоскость деления. Если митотическое веретено механически сместить на одну сторону клетки, то борозда дробления не дойдет до противоположной стороны клетки. Последующие деления будут происходить не только по экваторам двух митотических веретен (как это происходит в норме), но и между двумя соседними звездами, не связанными митотическим веретеном. Видимо, сократимый пучок из актиновых филаментов, создающий борозду дробления, всегда образуется в участке, лежащем посередине между двумя звездами. Это означает, что звезды каким-то образом изменяют окружающую область клеточного кортекса. периода иптерфазы. Первым видимым признаком цитокинеза у животных клеток бывает образование небольшой складки плазматической мембраны, появляющейся в анафазе и называемой бороздой деления (рис. 13-65). Эта борозда всегда образуется в плоскости метафазной пластинки, под прямым углом к длинной оси митотического веретена Если в анафазе на достаточно раннем этапе веретено переместить с помощью микроманипулятора, то наметившаяся борозда исчезнет и появится новая в соответствии с новым положением веретена. Изящные опыты на яйцах морского ежа ЕсЫпагаскпгш показывают, что борозда дробления будет формироваться посередине между звездами, образовавшимися из двух центросом, даже если центросомы не связаны митотическим веретеном (рис. 13-66). Позднее, когда процесс зашел уже достаточно далеко, цитокинез будет продолжаться и в том случае, если веретено и его звезды удалить пипеткой или разрушить колхицином. Рис. 13-66. Опыт, демонстрирующий <a href="/info/1576524">влияние положения</a> веретена на плоскость деления. Если <a href="/info/97968">митотическое веретено</a> механически сместить на одну сторону клетки, то борозда дробления не дойдет до <a href="/info/1447127">противоположной стороны</a> клетки. Последующие деления будут происходить не только по экваторам <a href="/info/1696521">двух</a> митотических веретен (как это происходит в норме), но и между двумя соседними звездами, не связанными митотическим веретеном. Видимо, сократимый пучок из <a href="/info/1339102">актиновых филаментов</a>, создающий борозду дробления, всегда образуется в участке, лежащем посередине между двумя звездами. Это означает, что звезды каким-то образом изменяют <a href="/info/1639232">окружающую область</a> <a href="/info/1339320">клеточного кортекса</a>. периода иптерфазы. Первым <a href="/info/1394719">видимым признаком</a> цитокинеза у животных клеток бывает образование небольшой складки <a href="/info/101065">плазматической мембраны</a>, появляющейся в анафазе и называемой <a href="/info/509122">бороздой деления</a> (рис. 13-65). Эта борозда всегда образуется в плоскости <a href="/info/1338994">метафазной пластинки</a>, под прямым углом к длинной оси <a href="/info/97968">митотического веретена</a> Если в анафазе на достаточно раннем этапе веретено переместить с помощью микроманипулятора, то наметившаяся борозда исчезнет и появится новая в соответствии с <a href="/info/1582946">новым положением</a> веретена. Изящные опыты на <a href="/info/169043">яйцах морского</a> ежа ЕсЫпагаскпгш показывают, что борозда дробления будет формироваться посередине между звездами, образовавшимися из <a href="/info/1696521">двух</a> центросом, даже если центросомы не связаны митотическим веретеном (рис. 13-66). Позднее, когда процесс зашел уже достаточно далеко, цитокинез будет продолжаться и в том случае, если веретено и его звезды удалить пипеткой или разрушить колхицином.
Рис. 13-73. Организация актиновых филаментов в растительной клетке во время цитокинеза. Актиновые филаменты (выделенные темнокрасным цветом) формируют радиальную сеть, которая нростирается от концов фрагмопласта до клеточного кортекса, образуя вокруг клетки кольцо. Эта сеть, по-вилимому. определяет плоскость образования клеточной пластинки. Другая группа актиновых филаментов расположена параллельно мнкротрубочкам, участвующим в образовании новой клеточной пластинки в фрагмопласте Еще одна группа актиновых филаментов (на рисунке не показана) подходит к кортексу из области двух дочерних ядер через большую центральную вакуоль, свойственную растительным Рис. 13-73. Организация <a href="/info/1339102">актиновых филаментов</a> в <a href="/info/105476">растительной клетке</a> во время цитокинеза. <a href="/info/1339102">Актиновые филаменты</a> (выделенные темнокрасным цветом) формируют <a href="/info/1431678">радиальную сеть</a>, которая нростирается от концов <a href="/info/510940">фрагмопласта</a> до <a href="/info/1339320">клеточного кортекса</a>, образуя <a href="/info/509955">вокруг клетки</a> кольцо. Эта сеть, по-вилимому. определяет плоскость <a href="/info/295488">образования клеточной</a> пластинки. <a href="/info/97381">Другая группа</a> <a href="/info/1339102">актиновых филаментов</a> <a href="/info/617889">расположена параллельно</a> мнкротрубочкам, участвующим в <a href="/info/73726">образовании новой</a> <a href="/info/509685">клеточной пластинки</a> в <a href="/info/510940">фрагмопласте</a> Еще одна группа <a href="/info/1339102">актиновых филаментов</a> (на рисунке не показана) подходит к кортексу из области <a href="/info/1696521">двух</a> дочерних ядер <a href="/info/820323">через большую</a> центральную вакуоль, свойственную растительным
    Для определения точного положения и формы клеточной стенки одного митотического веретена обычно не достаточно. Место соединения будущей пластинки со стенкой материнской клетки, но-видимому. определяется очень рано, еше до начала митоза, узким пучком микротрубочек - предпрофазным пояском, расположенным непосредственно под плазматической мембраной (см. разд. 20.5.5 и рис. 20-64). Хотя эти микротрубочки в начале митоза исчезают, от них зависит, в каком участке кортекса будет прикрепляться радиальная сеть актиновых филаментов, которая сохраняется на протяжении всей фазы М и должна будет направлять растущий край клеточной пластинки к надлежащей зоне кортекса (рис. [c.463]

    По-видимому, направляющий механизм зависит от перестройки цитоскелета цитотоксической клетки в результате специфического контакта с поверхностью клетки-мишеии. Если цитотоксическую Т-клетку во время ее взаимодействия с атакуемой мишеиью пометить антителами к тубулину, то можно увидеть, что ее центросома ориентирована в точку контакта с клеткой-мишенью (рис. 18-47). Кроме того, если клетку пометить антителами к талину - белку, участвующему, видимо, в соединении рецепторов клеточной поверхности с кортикальными актиновыми филаментами (разд. 11.2.8). то окажется, что талин сконцентрирован в кортексе цитотоксической клетки в месте контакта. Имеются данные в пользу того, что агрегация Т-клеточиых рецепторов в участке контакта приводит к локальному талин-зависимому скоплению актиновых филаментов затем механизм, зависимый от микротрубочек, ориеитирует центросому и связанный с нею аппарат Гольджи к участку контакта, направляя воздействие убивающего аппарата на клетку-мишень. Аналогичную поляризацию цитоскелета можно наблюдать и при функциональном взаимодействии Т-хелпера с клеткой, которой он помогает . [c.263]


Смотреть страницы где упоминается термин Актиновые филаменты и клеточный кортекс: [c.420]    [c.323]    [c.323]    [c.420]    [c.274]    [c.276]    [c.278]    [c.289]    [c.326]    [c.459]    [c.263]    [c.38]   
Смотреть главы в:

Молекулярная биология клетки Сборник задач -> Актиновые филаменты и клеточный кортекс




ПОИСК







© 2025 chem21.info Реклама на сайте