Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микротрубочки функции

    Большое число микротрубочек содержится в длинных аксонах нервных клеток. Здесь они, вероятно, обеспечивают быстрый перенос белков и других веществ из тела клетки в аксон Микротрубочки, функция которых неизвестна, обнаружены и во многих сенсорных клетках. Недавно было показано, что микротрубочки содержатся в цитоплазме самых разных клеток. Иопользуя непрямой метод флуоресцирующих антител, Вебер и др. получили приведенную ниже [c.276]


    В последние годы в цитологии возникло направление, изучающее поверхностный аппарат клетки клеточную стенку, плазмалемму, периферический слой цитоплазмы с микротрубочками. Функции поверхностного аппарата барьерная, транспортная и рецепторная. [c.120]

    ОТ образования микротрубочек или от присутствия медиатора нли Са2+ синаптический контакт не обусловлен наличием медиатора, электрической активностью или образованием функциональных рецепторов. Ни одно из исследований, сделанных до сих пор, полностью не отвечает на вопрос о механизме образования, специфичности и стабилизации синапсов и не решает проблемы этапного образования нейронной сети, ответственной за высшие функции нервной системы. В начале этой главы мы осветили этот вопрос как один из наиболее важных в нейробиологии, однако подробнее рассмотрим его немного позже. [c.330]

    Особым разделом химии колхицина и его аналогов следует признать взаимодействие с тубулином, белком микротрубочек, являющимся рецептором этих препаратов. Микротрубочки - групповое название класса компонентов разнообразных эукариотических клеток. Они представляют собой прямые цилиндры диаметром 240+20 8 с пустотой диаметром 150 8 в середине. Во всех известных случаях деления ядра микротрубочки образуют волокнистый остов веретена функции микротрубочек передвижение хромосом при делении клетки, развитие и сохранение формы клетки, внутриклеточное перемещение вещества, подвижность клетки, передача раздражения [c.68]

    Многие эукариотические клетки, в частности длинные клетки нервной системы животных, содержат микротрубочки дяш тром около 25 нм (рис. 2-16). Каждая микротрубочка состоит из 13 плотно упакованных нитей белковых молекул, расположенных вокруг полой сердцевины. В нервных клетках пучки микротрубочек участвуют в транспорте веществ из тела клетки к концам клеточных отростков-аксонов. Микротрубочки выполняют много функций. Например, при их участии осуществляется работа митотического веретена во время деления клеток они играют также роль двигательных элементов в ворсинках и жгутиках эукариот. [c.41]

    ПЕРЕТЯЖКА. Здесь наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Каждая ресничка состоит только из девяти периферических групп микротрубочек (центральная их пара, типичная для таких органелл, отсутствует) и не вьшолняет двигательных функций. [c.324]


    Центриоли всегда бывают расположены в материале, не имеющем четко выраженной структуры, который инициирует развитие микротрубочек. Эту область клетки называют центросомой. Именно центросома образует веретено, потому что нити веретена на самом деле представляют собой микротрубочки. Это позволяет объяснить, как растения и грибы, не имеющие центриолей, также способны образовывать веретено. Функция центриолей в делении ядра остается неясной. Возможно, они участвуют в ориентации веретена, помогая таким образом установить, в какой плоскости будет проходить деление клетки. Некоторые нити веретена тянутся от одного полюса к другому, тогда как другие — от полюсов к центромерам. Укорочение этих нитей веретена в результате удаления субъединиц тубулина позволяет объяснить перемещения хромосом и хроматид во время клеточного деления. Они фактически наматываются центросомами. [c.149]

    Разнообразные функции цитоскелета зависят от трех главных типов белковых нитей - актиновых филаментов, микротрубочек и промежуточных филаментов. Пити этих трех типов построены из разных структур в зависимости от того, с какими дополнительными белками они ассоциированы. Некоторые из этих белков соединяют филаменты друг с другом или с иными компонентами клетки, например с плазматической мембраной. Другие определяют время и место сборки актиновых филаментов и микротрубочек, регулируя скорость и степень их полимеризации. И наконец, есть белки, благодаря взаимодействию которых с филаментами, осуществляется движение наиболее изученные примеры - сокращение мышц, зависящее от актиновых филаментов, и биение ресничек, зависящее от микротрубочек. [c.254]

    Необычайная эволюционная консервативность актина и тубулина может, но крайней мере отчасти, быть следствием структурных ограничений, которые накладываются связыванием их с многочисленными (и разнообразными) белками. Молекулы тубулина, так же как и актина, взаимодействуют не только между собой, но и со многими вспомогательными белками. Как мы увидим, эти белки модифицируют свойства микротрубочек и соединяют их с другими структурами клетки. По-видимому, большинство случайных мутационных изменений нарушают хотя бы одну из функций микротрубочек или актиновых филаментов и поэтому оказываются вредными для организма. [c.295]

    Почти во всех животных клетках актин и тубулин содержатся в больших количествах, но тубулина в них все же, как правило, меньше. Кроме того, поскольку микротрубочки толще, чем актиновые филаменты, для образования полимера одинаковой длины тубулина требуется примерно в 10 раз больше, чем актина (см. табл. 11-4). Поэтому общая длина актиновых филаментов в клетке но крайней мере в 30 раз больше общей длины микротрубочек. Это отражает фундаментальную разницу в структурной организации и функциях этих двух цитоскелетных полимеров в то время как актиновые филаменты образуют соединенные сшивками сети и небольшие пучки в периферической цитоплазме, микротрубочки обычно существуют в виде отдельных нитей, которые расходятся в стороны через всю цитоплазму из небольшой области вблизи ядра. Микротрубочки образуют систему волокон, но которой могут перемещаться различные пузырьки и другие органеллы, ограниченные мембраной тем самым они влияют на полярность клетки, могут регулировать ее форму и движение и определяют ориентацию плоскости клеточного деления. [c.302]

    Многие системы микротрубочек в клетках весьма лабильны, причем эта лабильность важна для их функции. Один из наиболее ярких примеров-митотическое веретено, которое образуется после того, как в начале митоза микротрубочки цитоплазмы распадаются (разд. 13.5.2). [c.302]

    Помимо этих трех основных типов белковых филаментов цитоскелет включает также множество различных вспомогательных белков, которые либо связывают филаменты друг с другом или с другими клеточными структурами (например, с плазматической мембраной), либо влияют на скорость и степень полимеризации филаментов. Специфические комплексы вспомогательных белков, взаимодействуя с белковыми филаментами, обеспечивают процессы движения. Два наиболее изученных примера-мышечное сокращение, за которое ответственны актиновые филаменты, и подвижность ресничек и жгутиков, связанная с функцией микротрубочек. Хотя в этих видах движения участвуют разные наборы белков, в обоих случаях движение связано с гидролизом АТФ и основано на одном принципе-на скольжении белковых нитей относительно друг друга. [c.75]

    После мышечного сокращения наиболее изученным типом клеточной подвижности является движение ресничек. Реснички (и жгутики)-это миниатюрные волосовидные образования толщиной около 0,25 мкм, содержащие в середине пучок параллельно расположенных микротрубочек. Они к[меются на поверхности клеток многих типов и встречаются у большинства животных и некоторых низших растений. Их главная функция состоит в продвижении жидкости вдоль поверхности клетки или в проталкивании клетки сквозь толщу воды. Простейшие, например, используют реснички для собственного передвижения и для сбора пищевых частиц. В организме человека огромное множество ресничек, принадлежащих клеткам эпителия (до 10 и более на 1 см ), покрывает поверхность нижних дыхательных путей, где они заставляют постоянно двигаться вверх слой слизи с частицами осевшей пыли и остатками отмерших клеток. Реснички обеспечивают также продвижение яйцеклетки по яйцеводу. [c.88]


    Вьщелено уже немало белков, которые избирательно связываются с микротрубочками. Функции большинства из них не известны Некоторые, вероятно, играют роль структурных компонентов, стабилизируя микротрубочки и обеспечивая постоянную связь их с другими [c.310]

    По структуре центриоли сходны со жгутиками или более короткими образованиями — ресничками (эти термины, в сущности, синонимы), обычно находятся на поверхности клеток эукариот и являются органами движения. Неподвижные клетки тела человека также нередко имеют реснички. Например, эпителий бронхов несет 10 ресничек на 1 см Г26]. Модифицированные жгутики образуют светочувствительные рецепторы нашего глаза и рецепторы вкуса на языке. Жгутики и реснички несколько больше по диаметру (около 0,2 мкм), чем центриоли, и обладают характерной внутренней структурой они состоят из И полых микротрубочек диаметром 24 нм, организованных по схеме 9 + 2 (рис. 1-5 и 1-6). Каждая микротрубочка внешне похожа на жгутик бактерии, но существенно отличается от него по химическому составу. Базальное тельце, называемое также кинетосомой (рис. 1-5), по структуре, размерам и способу воспроизведения сходно с центриолью. Микротрубочки, подобные тем, которые входят в состав жгутиков, обнаружены также в цитоплазме клеток [27]. Они выглядят как маленькие канальцы, но действительно ли играют такую роль — неясно. Скорее всего микротрубочки выполняют опорную функцию цитоокелета . В аксоне нерва микротрубочки расположены по всей длине аксона и, вероятно, составляют часть механической системы переноса клеточных компонентов. [c.37]

    Каждый из нас легко отличит растение от зверя или птицы. Обычно нетрудно даже решить, какому организму-растительному или животному-принадлежит отдельная клетка, хотя здесь могут быть и проблематичные случаи. Но по мере более глубокого проникновения внутрь клетки, при исследовании ее цитоплазмы, органелл и, наконец, индивидуальных химических компонентов на первый план начинают выступать уже Не различия, а черты сходства между двумя царствами живой природы. Лишь с помошью весьма тонких методов можно отличить растительные митохондрии, ядра и рибосомы от соответствующих животных органелл, а многие компоненты растительных и животных клеток, такие, например, как микротрубочки, практически неразличимы. Специфика растительной и животной жизни проявляется не в таких фундаментальных особенностях молекулярной организации живого, как репликация ДНК, биосинтез белков, процессы фосфорилирования в митохондриях нли конструкция клеточных мембран,-скорее оиа связана с более спе-циажзированкыми функциями клеток и тканей Большая часть различий между обоими царствами возникла в ходе эволюционной дивергенции, для которой отправными точками послужили два фундаментальных события приобретение способности связывать углекислоту в процессе фотосинтеза (см. гл. 9) и появление жесткой клеточной стенки у предков современных растений. Отдаленные последствия второго из указанных событий и будут предметом обсуждения в этой главе. [c.160]

    Ксилема-еще одна сложная ткань, которая тоже ведет начало от тонкостенных камбиальных клеток и состоит из трубчатых элементов. Она ответственна за транспорт воды и растворенных минеральных солей из корней во все остальные части растения. Главные элементы, выполняющие здесь транспортную функцию,-это сосуды и трахеиды. Образующие их трубчатые клетки имеют необычанио толстую вторичную клеточную стенку, укрепленную локальными отложениями лигнина, на долю которого приходится от 20 до 30% веса клеточной стенки (рис. 19-13). В отличие от клеток флоэмы, эти клетки отмирают, после того как их стенка окончательно сформируется. В начальный период дифференцировки ксилемы в клетках молодой растущей ткани происходит утолщение стенок за счет локальных отложений целлюлозы. Места этнх отложений определяются пучками микротрубочек, формирующихся под плазматической мембраной. Довольно часто между этими пучками лежат элементы эндоплазматического ретикулума, маркирующие те зоны клеточной стенки, которые утолщаться не будут. Утолщенные участки впоследствии будут укреплены путем отложения лигнина-практически нерастворимого полимера, относящегося к одному из классов фенольных соединений. Лигнин образует обширную плотную трехмерную сетку, армирующую клеточные стенкн, а на макроскопическом уровне получается такой хорошо знакомый нам материал, как древесина. [c.170]

    Для координированного роста всего растения нужно, чтобы клетки в некоторых его частях делились в опрецелеиной плоскости и в определенное время это обеспечивало бы формирование правильно расположенных групп клеток. Микротрубочки играют важнейшую роль не только в работе митотического веретена, в образовании клеточной пластинки и в ориентации целлюлозных микрофнбрилл в составе клеточной стенки (рис. 19-55 и 19-56) определение плоскости и точного места деления клеткн-тоже функция микротрубочек. [c.199]

Рис. 2-16. Микротрубочки. Эти длинные полые структуры вьшолняют множество функций в клетке. Они придают клеткам форму, участвуют в клеточном делении (рис. 2-9) и транспорте веществ, щ-рают роль подвижных структурных компонентов ресничек и жгутиков (рис, 2-18) в эукариотических клетках и образуют часть цитоскеяета (рис. 2-17). А. Строение микротрубочки. Она собрана из комплексов двух белков-а- и Р-тубулина. Эти белки образуют 13 вертикальных нитей, расположенных в виде спирали вокруг полой сердцевины. Диаметр и шаг спирали несколько варьируют у разных клеток. Б. Поперечное сечение микротрубочки, на котором 13 вертикальных нитей видны с торца. Рис. 2-16. Микротрубочки. Эти <a href="/info/16631">длинные полые</a> структуры вьшолняют <a href="/info/768857">множество функций</a> в клетке. Они придают <a href="/info/327816">клеткам форму</a>, участвуют в <a href="/info/103762">клеточном делении</a> (рис. 2-9) и <a href="/info/100703">транспорте веществ</a>, щ-рают <a href="/info/168475">роль подвижных</a> <a href="/info/26229">структурных компонентов</a> ресничек и жгутиков (рис, 2-18) в <a href="/info/104367">эукариотических клетках</a> и образуют часть цитоскеяета (рис. 2-17). А. Строение микротрубочки. Она собрана из комплексов <a href="/info/1696521">двух</a> белков-а- и Р-тубулина. Эти <a href="/info/1435566">белки образуют</a> 13 вертикальных нитей, расположенных в виде спирали <a href="/info/473123">вокруг полой</a> сердцевины. Диаметр и шаг спирали несколько варьируют у разных клеток. Б. <a href="/info/3798">Поперечное сечение</a> микротрубочки, на котором 13 вертикальных нитей видны с торца.
    Электронный микроскоп вьывил наличие структуры в основном веществе цитоплазмы, которое ранее представлялось бесструктурным. Во всех эукариотических клетках была обнаружена сеть тонких белковых нитей. Все вместе они образуют так называемый цитоскелет. Различают по меньщей мере три типа таких структур микротрубочки, микрофиламенты и промежуточные филаменты. Их функции связаны с внутрикпе- [c.202]

    Микротрубочки содержатся почти во всех эукариотических клетках (рис. 5.33). Это полые, очень тонкие неразветвленные трубочки диаметром приблизительно 24 нм их стенки толщиной около 5 нм построены из спирально упакованных субъединиц белка тубулина (рис. 5.34). Рис. 5.30 дает представление о том, как выглядят микротрубочки на электронных микрофотографиях. Растут микротрубочки с одного конца путем добавления тубулиновых субъединщ. Рост видимо, может начаться лишь при наличии матрицы есть основания полагать, что роль таких матриц играют какие-то очень мелкие кольцевые структуры, которые были выделены из клеток и которые, как вьыснилось, состоят из тубулиновых субъединиц. В интактных клетках ту же функцию выполняют центриоли, поэтому их иногда называют центрами организации микротрубочек (ЦОМ). Центриоли состоят из коротких микротрубочек. [c.203]

    Какое свойство центромеры прямо связано с механизмом расхождения хромосом Внутри центромеры можно увидеть темноокрашивающееся волокнистое образование с диаметром или длиной около 400 нм. Это вещество называют кинетохором. Кинетохор-это различимая структура, которая, по-видимому, непосредственно прикрепляется к микротрубочке. Обычно считают, что некая специфическая последовательность ДНК определяет место формирования кинетохора на хромосоме. У хромосом разных организмов структуры кинетохоров сильно варьируют, что затрудняет анализ их функции. Однако было показано, что кинетохоры содержат ДНК поэтому можно предполагать, что кинетохор образуется непосредственно на соответствующей последовательности хромосомы. [c.352]

    Можно было бы думать, что многие из производимых клеточным кортексом движений, как, например, фагоцитоз или локомоция, зависят от динамического равновесия между свободным (неполимерным) актином и актиновыми филаментами. Однако но сравнению со взрывными изменениями, происходящими в активированном спермин, изменения в полимеризации актина при этих движениях обычно слишком малы и краткоеременны, чтобы их легко было обнаружить. Однако на важную роль нолимеризации и деполимеризации актина в таких движениях указывают эффекты ряда веществ, которые предотвращают изменения в состоянии актина и тем самым нарушают его двигательную функцию. Например, цитохалазины (рис. 11-46)-семейство метаболитов, выделяемых различными плесневыми грибами,-подавляют многие формы подвижности клеток позвоночных, включая локомоцию, фагоцитоз, цитокинез, образование ламеллоподии и микрошипов и сворачивание энителиальных пластов в трубки. В то же время эти вещества не влияют на расхождение хромосом в митозе, которое зависит в основном от функции микротрубочек веретена, и на мышечное сокращение, в кото- [c.289]

    После мышечного сокращения наиболее изученным видом клеточной нодвижности является биение ресничек. Реснички - это миниатюрные волосовидные образования толщиной около 0.25 мкм. построенные из микротрубочек (микротрубочки - это вторая из грех главных груш нитевидных элементов цитоскелета). Реснички имеются у клеток многих типов и встречаются у большинства животных и некоторых низших растений. Их главная функция - создавать ток жидкости около поверхности клетки или продвигать клетку вперед сквозь толщу воды Простейшие, например, используют реснички и для передвижения, и для сбора пищевых частиц. У человека огромное множество ресничек (10 и более на 1 см ), принадлежащих клеткам эпителия нижних дыхательных путей, непрерывно перемещает слизь с частицами пыли и остатками отмерших клеток вверх, к ротовой полости, где слизь проглатывается и удаляется. Реснички обеспечивают гакже передвижение яйцеклетки по яйцеводу, а сходная с ними структура - жгутик -движет снерматозоггды позвоночньгх. [c.292]

    Все ныне известные тубулины, будучи смешаны in vitro, образуют одинаковые микротрубочки. Тем не менее кажется вероятным, что некоторые вариации в структуре тубулинов имеют для клетки функциональное значение. В частности, у высших позвоночных участки тубулинов обоих типов (а и Р), содержащие необычно много кислых аминокислотных остатков, обнаруживают явные тканеспецифические различия. Эта область в молекулах тубулина. как полагают, участвует в связывании вспомогательных белков, и изменения ее аминокислотной последовательности могут изменять функции микротрубочек, влияя на связывание этих белков. [c.295]

    Те центриоли, которые образуют базальные тельца ресничек, выполняют в клетке весьма специализированную функцию, так как реснички сами по себе - структуры специализированные. Наряду с этим почти во всех животных клетках имеется пара центриолей, которая служит как бы срединным элементом центросомы, или клеточного центра. Центросома (разд. 13.5.2) организует цитоплазматические микротрубочки в интерфазных клетках, а в делящихся клетках удваивается и дает начало двум полюсам митотического веретена (мы обсудим это в следующем разделе). Иногда центриоли могут выполнять поочередно то одну функцию, то другую у hlamydomonas. нанример. перед каждым митозом оба жгутика исчезают, а базальные тельца покидают свое место, чтобы стать полюсами веретена. [c.301]

    В тех микротрубочках, которые образовались в нужных местах, субъединицы тубулина подвергаются модификации - ацетилированию и детирозилированию. Эти модификации играют роль маркеров зрелых микротрубочек и создают участки для связывания специальных белков, ассоциированных с микротрубочками (БАМ), которые еще больше повышают устойчивость микротрубочек к деполимеризации и адаптируют их для выполнения специфических функций в клетке. Особая группа таких белков использует энергию гидролиза АТР для однонаправленного перемещения вдоль по микротрубочке, обеспечивая этим направленное движение в цитоплазме клеточных органелл и их правильную пространственную организацию. [c.313]

    Различные потенции к связыванию других белков могут обеспечиваться вариабельными участками белков промежуточных филаментов. Влияя на свойства филамента, )ти вариабельные участки определяют пе только его способность к самосборке, но и то, как он будет взаимодействовать с другими компонентами клетки (например, с микротрубочками и плазматической мембраной). Это совершенно иная стратегии чем в случае двух других важнейших элементов цитоскелета - актиновных филаментов и микротрубочек как мы уже знаем, эти полимеры в основном инвариантны по структуре, а к выполнению различных функций они приспосабливаются с помошью разных наборов актип-связываюших белков и белков, ассоциированных с микротрубочками. Таким образом, роль вариабельных участков в белках промежуточных филаментов та же, что и у вспомогательных белков актиновых филаментов и микро-трубочек, - разница лишь в том, что одни ковалентно связаны с субъединицами филамента, а другие представляют собой отдельные молекулы. [c.320]

    До сих пор мы рассматривали микротрубочки, актиновые филаменты и промежуточные филаменты так, как будто это независимые составные части цитоскелета. В действительности, конечно, различные элементы питоскелета должны быть связаны в единое целое, а их функции скоординированы, чтобы клетка могла осуществлять разного рода движения и изменять свою форму. Например, когда находящийся в культуре фибробласт округляется, готовясь к делению, реорганизуется весь его цитоскелет в целом исчезают стрессовые волокна и цитоплазматические микротрубочки, появляется митотическое веретено. [c.320]

    Тиреоглобулин представляет собой форму хранения Тз и Т4 в коллоиде и при нормальной функции щитовидной железы обеспечивает поступление этих гормонов в кровь на протяжении нескольких недель. После стимуляции щитовидной железы тиреотропином (или с АМР) уже за несколько минут заметно увеличивается число микроворсинок на апикальной мембране. В ходе зависимого от микротрубочек процесса происходит захват тиреоглобулина, а последующий пиноцитоз обеспечивает его перенос обратно в фолликулярную клетку. Фагосомы сливаются с лизосомами с образованием фаголизосом, в которых различные кислые протеазы и пептидазы гидролизуют тиреоглобулин на аминокислоты, включая иодтиронины. Т4 и Т3 высвобождаются в кровь из базальной части клетки, вероятно, путем облегченной диффузии. Отношение Т4/Т3 в крови ниже, чем в тиреоглобулине, откуда следует, что в щитовидной железе должно иметь место избирательное деиодирование Т4. Ежедневная секреция гормонального иода щитовидной железой составляет 50 мкг. С учетом среднего захвата иодида (25—30% потребленного иодида) дневная потребность в нем колеблется от 150 до 200 мкг. [c.187]

    Совершенно очевидно, что механическую работу, включающую амебоидные движения, морфогенез, деление, эндоцитоз, экзоцитоз, внутриклеточный транспорт и изменение формы, выполняют и немышечные клетки. Эти клеточные функции осуществляются обширной внутриклеточной сетью волокнистых структур, образующих цитоскелет. Клеточная цитоплазма — это не просто мешок с жидкостью, как думали раньше. Практически все эукариотические клетки содержат три типа волокнистых структур ai THHOBbie филаменты (нити) (7—9,5 нм в диаметре), микротрубочки (25 нм) и промежуточные нити (10—12 нм). Каждый из этих типов можно отличить с помощью специфических биохимических и электронно-микроскопических методик. [c.342]

    Микротрубочки — это важнейший компонент клеточного цитоскелета. Они необходимы для образования и функционирования митотического веретена и, следовательно, присутствуют во всех эукариотических клетках. Эти органеллы выполняют и ряд других клеточных функций. Они определяют внутриклеточное перемещение эндоцитозных и экзоцито-зных везикул (пузырьков), служат основным структурным компонентом ресничек и жгутиков и главным белковым компонентом аксонов и дендритов. Микротрубочки поддерживают их структуру и участвуют в аксоплазматическом токе веществ вдоль этих нервных отростков. [c.344]

    Микротрубочки растут в одном направлении от специфических центров (центриолей) внутри клетки. На каждой хроматиде хромосомы (см. гл. 37) имеется кинетохор, откуда начинается рост микротрубочек. Многие нарущения в делении хромосом являются результатом аномалий в структуре или функции кинетохоров. Движение хромосом в анафазе митоза зависит от микротрубочек, но молекуляр- [c.345]

    Нейрофиламенты тоньше микротрубочек в электронном ми- кроскопе с высоким разрешением видно, что они тоже имеют трубчатое строение. С помощью биохимических исследований в аксонах обнаружены фибриллярные белки с меньшим молекулярным весом, иной растворимостью и иным аминокислотным составом, чем у тубулина это могут быть белки нейрофиламен-тов. Нейрофиламенты встречаются только в нервных клетках. Они особенно заметны в крупных аксонах, где их больше, чем микротрубочек в то же время в мелких аксонах и дендритах отношение обратное. Нейрофиламенты и их соотношение с микротрубочками меняются при старении, и их крайнее изменение— развитие клубков и бляшек, по-видимому, связано с утратой нейронной функции, лежащей в основе прогрессирующего старения, наблюдаемого при болезни Альцгеймера. [c.94]

    У некоторых глиальных клеток заметно меньше ветвей, и ветви эти тоньше, чем у астроцитов такие клетки называются оли-годендроцитами. С помощью электронного микроскопа установлено, что в них мало нейрофиламентов и гранул гликогена, но много микротрубочек. Их ветви часто бывает трудно отличить от отростков нервных клеток, но можно дифференцировать по тому признаку, что они никогда не образуют синапсов. Функции олигодендроцитов еще не полностью определены убедительные данные говорят о том, что они образуют миелин вокруг аксонов в центральной нервной системе (см. ниже) предполагается также, что они связаны симбиотически с некоторыми нервными клетками и осуществляют сложный метаболический обмен с ними. [c.99]


Смотреть страницы где упоминается термин Микротрубочки функции: [c.124]    [c.42]    [c.18]    [c.93]    [c.291]    [c.298]    [c.299]    [c.310]    [c.312]    [c.445]    [c.446]    [c.42]    [c.120]    [c.42]    [c.261]   
Цитоскелет Архитектура и хореография клетки (1987) -- [ c.30 , c.36 , c.68 , c.69 , c.74 , c.80 , c.80 , c.83 , c.83 , c.85 , c.85 , c.87 , c.87 , c.90 , c.90 , c.91 , c.91 , c.93 , c.97 , c.108 ]




ПОИСК







© 2024 chem21.info Реклама на сайте