Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движение жидкости равномерное

    Жидкость подводится сверху к вращающемуся разбрызгивающему устройству 1, которое вращается на валу, приводимом в движение электромотором 2. Жидкость равномерно разбрызгивается на поверхность нагрева испарителя 4 и пленкой стекает вниз. Тепло подводится греющим кожухом 5, имеющим каналы. Сгущенный раствор через патрубок отводится из конусообразного днища испарителя. Пары испаряемой жидкости конденсируются на охлаждающей поверхности конденсатора 6 конденсат собирается в водосборных желобах 7, установленных по периметру на определенной высоте. Из отдельных желобов конденсат собирается в нижний желоб, откуда удаляется через патрубок. [c.236]


    На рис. У-2 показано строение двойного электрического слоя для растворов электролитов средней концентрации. Отрицательно заряженные ионы адсорбируются на поверхности твердого тела, образуя тонкий внутренний слой. Положительно заряженные ионы образуют внешний слой, причем концентрация этих ионов в нем убывает в направлении от поверхности твердого тела. Такой характер внешнего слоя объясняется взаимным влиянием электростатического поля, концентрирующего положительно заряженные ионы вблизи внутреннего слоя, и теплового движения молекул, равномерно распределяющего эти ионы во всем объеме жидкости. [c.192]

    Для повышения равномерности движения жидкости во всасывающем и напорном трубопроводах на них устанавливают воздушные колпаки (заполнен( ые воздухом объемы), примыкающие к всасывающему и нагнетательному клапанам. В воздушном колпаке воздух сжимается, когда расход жидкости превышает средний, а соответствующая часть воздушного колпака заполняется жидкостью, которая выталкивается вновь в трубопровод в результате расширения воздуха в воздушном колпаке, когда расход оказывается меньше среднего. [c.97]

    Влияние размеров насадки на массообмен представляет собою равнодействующую ее влияния на диаметр капли и скорость ее движения. Эти величины определяют удерживающую способность и поверхность контакта [уравнение (4-9)]. Скорость движения жидкости равномерно уменьшается с сокращением размеров насадки, например диаметра колец Рашига, и оказывается наименьшей для насадки наименьших размеров. Это влияние обычно сильнее сказывается на скорости движения, чем на диаметре капель, и поэтому, если размеры насадок ниже критических, поверхность контакта фаз наибольшая и массообмен идет быстрее всего, несмотря на увеличение диаметра капель. Такая зависимость установлена для колец Рашига и [c.327]

    Для процессов разделения, в которых требуется обеспечить низкое гидравлическое сопротивление используется ситчатая тарелка с отбойными элементами (рис. 3.18). По принципу действия тарелка относится к классу перекрестно-прямоточных конструкций. Основание тарелки выполнено из просечно-вытяжного листа, ячейки которого имеют наклон 30 и обраш,ены в сторону слива жидкости, благодаря чему часть энергии пара используется для организации движения жидкости по тарелке, обеспечивая равномерную работу по всей ее плоскости. Для предотвращения уноса жидкости на тарелке поперек движения жидкости установ- [c.331]

    В направлении, перпендикулярном движению жидкости, равномерность барботажа зависит от горизонтальности установки полотна тарелки, отсутствия волн и прогибов самого полотна, а также горизонтальности установки приемной (распределительной) и сливной планки, через которую жидкость сливается с тарелки. Горизонтальность тарелки приобретает решающее значение особенно для тарелок большого диаметра (5-10 м), поскольку допустимая разница высот от горизонтали по диаметру тарелки не должна превышать 3 мм. Установка с такой точностью крупных несущих балок, на которые опирается полотно тарелки, представляет непростую задачу. [c.512]


    Принимая движение жидкости равномерным, т. е. без инерционных явлений, выделенный элемент будет находиться под действием только двух сил — силы тяжести жидкости G и силы трения Т. [c.15]

    Эти реакторы имеют механическую мешалку с центральным валом и лопастями (лопатками), число которых обычно равно 6, реже 8 (рис.2). Лопасти могут быть прямыми или изогнутыми, часто их располагают в несколько ярусов, что обеспечивает более эффективное перемешивание больших объемов жидкости. В систему входят также отражательные перегородки - узкие металлические пластинки, прикрепленные к внутренним стенкам биореактора. Они предотвращают возникновение водоворотов и обеспечивают вихревое движение жидкости, равномерно распределяемое но всему объему реактора. Однако в ряде случаев они не могут быть применены (культивирование мицелиальных грибов), так как обрастают микроорганизмами (мицелием). Нежное и медленное перемешивание создается в биореакторах, предназначаемых для выращивания ьслеток животных и (в меньшей степени) растений. [c.37]

    Основные сведения. Центробежные насосы относятся к группе лопастных насосов, в которых жидкость перекачивается под действием центробежной силы вращающегося лопастного рабочего колеса. Движение жидкости равномерное, без пульсаций. [c.100]

    Равномерным движением жидкости называется такое движение, при котором живые сечения потока одинаковы по всей его длине и скорость потока в соответствующих точках всех живых сечений также одинакова. Движение жидкости, при котором эти условия не выполняются, называется неравномерным. [c.13]

    Чем больше разность — р, тем сильнее колебание скорости жидкости, вытекающей из газового колпака в нагнетательный трубопровод. Движение жидкости в нагнетательном трубопроводе считают равномерным при тк 0,025. При определенном значении коэффициента неравномерности давления т, = 0,025 объем нагнетательного газового колпака определяют по формулам для пасоса одинарного действия [c.111]

    К аппаратам промышленных масштабов предъявляются требования, определяемые условиями их изготовления и эксплуатации. Прежде всего, промышленные аппараты для осуществления мембранных процессов, в том числе и для обратного осмоса и ультрафильтрации, должны иметь большую рабочую поверхность мембран в единице объема аппарата. Они должны быть простыми в сборке и монтаже ввиду необходимости периодической смены мембран. При движении жидкости по секциям или элементам аппарата она должна равномерно распределяться над мембранной поверхностью и иметь достаточно высокую скорость течения для снижения влияния концентрационной поляризации (см. стр. 170). При этом перепад давления в аппарате должен быть по возможности небольшим. Кроме того, необходимо выполнение всех требований, связанных с работой аппаратов при повышенных давлениях обеспечение механической прочности, герметичности и т. д. Создать аппарат, который в полной мере удовлетворяет всем требованиям, по-видимому, невозможно. Поэтому для каждого конкретного процесса разделения следует подбирать конструкцию аппарата, обеспечивающую наиболее выгодные условия проведения именно этого процесса. [c.115]

    Шарик термометра в приборе Тиле должен находиться на равном" удалении от стенок примерно посередине вертикального участка — там, где движение жидкости наиболее равномерное. Капилляр с веществом можно прикреплять непосредственно к термометру, например при помощи резинового колечка, [c.177]

    Организация движения жидкости на тарелке. Критериями правильной организации движения жидкости на тарелке являются малый градиент уровня жидкости на тарелке и нормальная работа сливных устройств. Равномерное распределение пара по сечению колпачковой тарелки достигается, если градиент уровня жидкости не превышает 20—25 мм, а нагрузка но жидкости 65 м /(м-ч). Если основные потери давления происходят в контактных элементах тарелки, то изменение градиента жидкости не оказывает решающего влияния на распределение паров по сечению. Рекомендуется соблюдать следующее соотношение между градиентом уровня жидкости и сопротивлением сухой тарелки АР с А = 2. [c.86]

    Чем меньше поршней (плунжеров), тем проще схема насоса и тем меньше сменных деталей, что очень важно в условиях интенсивного их износа. С другой стороны, увеличением рядов, в которых использованы стандартные детали, достигается повышение подачи и равномерности движения жидкости в трубопроводах (см. 39). [c.97]

    Работа по схеме г осуществлена на тарелке, у которой колпачки имеют отогнутые прорези. Проходя через такие прорези, газ создает направленный ноток жидкости и обеспечивает тем самым движение жидкости по тарелке единым потоком между колпачками. Достоинство подобной тарелки — равномерная работа и высокая эффективность ввиду большого пути жидкости однако такая тарелка пригодна лишь для работы с незначительными расходами жидкости. [c.133]

    Характерным и отличительным признаком в работе перекрестно-прямоточных тарелок является использование энергии пара для организации движения жидкости по тарелке и сепарации жидкости после осуществления контакта. Перекрестно-прямоточное движение пара и жидкости по тарелке обеспечивает равномерную работу тарелки по всей ее плоскости, т. е. исключает поперечную неравномерность, полностью или частично исключает обратное перемешивание жидкости на тарелке, улучшает сепарацию жидкости после осуществления контакта с помощью центробежных сил и, следовательно, применимы более высокие скорости пара. [c.135]


    При установившемся движении и одинаковой величине средних скоростей во всех поперечных сечениях потока имеем равномерное движение жидкости при изменении величин скоростей потока от сечения к сечению — неравномерное движение. [c.39]

    Сопротивление при равномерном движении жидкости по трубопроводу. При равномерном движении жидкости возникают силы [c.49]

    Из сказанного следует, что при турбулентном режиме скорости распределены более равномерно по сечению потока по сравнению с распределением скоростей при ламинарном режиме. Характерное распределение скоростей для каждого режима движения жидкости устанавливается на протяжении некоторого участка трубопровода, называемого начальным, длину которого рассчитывают по формулам  [c.54]

    При достаточном объеме воздушных колпаков движение жидкости в трубопроводах можно считать практически равномерным. [c.97]

    Объем воздуха в колпаке гораздо больше объема поступающей жидкости. Поэтому давление воздуха в колпаке при сжатии и расщирении воздуха изменяется незначительно, и движение жидкости в нагнетательном трубопроводе близко к равномерному. [c.211]

    При выводе формулы (8-23) не учитывался характер движения жидкости в отстойнике (возможность вихреобразований) и допускалось, что потоки равномерно распределяются по всей площади аппарата. Для Определения необходимой поверхности отстаивания следует теоретическую поверхность, рассчитанную по формуле (8-23), умножить на некоторый коэффициент, учитывающий влияние неравномерности отстаивания, вихреобразований и других факторов на реальный процесс отстаивания. Ориентировочно этот коэффициент можно принять равным 1,3. [c.250]

    Для нормальной работы барботажной тарелки должно быть обеспечено равномерное распределение потока паров по всей рабочей площади тарелки, т.е. гидравлическое сопротивление каждого контактного элемента (колпачка, клапана, отверстия) должно быть одинаковым. Этого можно достичь погружением контактных элементов в слой жидкости на одну и ту же глубину. Если высота слоя жидкости на тарелке меняется незначительно, что характерно для колонн относительно небольшого диаметра (обычно менее 1 м), то колпачки могут быть установлены на одном горизонтальном уровне. Для колонн большого диаметра и при значительных расходах жидкости, когда высота слоя жидкости на тарелке существенно меняется (более 10 мм), применяют разный уровень установки колпачков (более высокий у колпачков, расположенных ближе к входу жидкости на тарелку). Кроме того, устраивают несколько каскадов по пути движения жидкости или делят общий поток жидкости на несколько потоков (см. рис. У11-2, а-г). [c.230]

    Другим примером, иллюстрирующим различие времен пребывания, может служить рассмотрение профиля скоростей при движении жидкости по трубе (см. рис. II-10, стр. 45). Различия в скоростях по сечению наиболее велики при ламинарном течении. Поэтому частицы, движущиеся вблизи оси трубы, обгоняют частицы, движущиеся ближе к ее стенкам, и находятся в трубе значительно меньшее время, чем последние. При турбулентном течении скорости распределены по сечению трубы более равномерно. Однако и в данном случае время пребывания разных частиц жидкости неодинаково, что обусловлено турбулентными пульсациями, под действием которых происходит перемешивание частиц, или турбулентная диффузия различные частицы движутся в разных направлениях по отношению к движению основной массы потока, в том числе и в поперечном (радиальная диффузия), и в продольном (осевая диффузия). Осевая диффузия может как совпадать по направлению с движением основной массы потока, так и быть направлена в обратную сторону, в результате чего возникают различия во времени пребывания частиц жидкости. Радиальная же диффузия, выравнивая профиль скоростей, наоборот, сближает время пребывания разных частиц. [c.117]

    При этом давление воздуха, находящегося в колпаке, изменяется незначительно (поскольку его объем гораздо больше объема поступающей жидкости) и движение жидкости в нагнетательном (или всасывающем) трубопроводе становится близким к равномерному. [c.143]

    Измерения начинают через 5 мин после замыкания электрической цепи (для установления равномерного движения жидкости через диафрагму). За это время, наблюдая за направлением пере- [c.89]

    Как известно, в смесях газов и в растворах частицы равномерно распределяются по всему объему. Например, если на концентрированный раствор сахара осторожно налить слой чистой воды, то молекулы сахара, совершая хаотическое тепловое движение, постепенно равномерно распределяются по всему объему жидкости. Одновременно в молекулы воды проникают в раствор сахара, разбавляя его. Оба эти процесса идут самопроизвольно и до тех пор, пока не произойдет полное выравнивание концентрации [c.97]

    Аппараты с неподвижным слоем твердого материала. В этих аппаратах скорость движения жидкости при ее фильтровании сквозь слой практически совпадает по величине и направлению со скоростью обтекания. Простейшим аппаратом такого типа является открытый резервуар с ложным днищем (решеткой), подобный открытому нутч-фильтру (см. стр. 199). На решетку загружается слой твердого материала, через который сверху вниз протекает растворитель. При таком направлении движения жидкость равномерно заполняет сечение аппарата и не происходит смешения более концентрированного раствора с раствором низкой концентрации, приводящего к снижению движущей силы. Выгрузку выщелаченного твердого остатка производят периодически, чаще всего гидравлическим способом — вымывая твердый материал из аппарата водой. [c.556]

    ВНИЗ протекает растворитель. При таком направлении движения жидкость равномерно заполняет сечение аппарата и не происходит смешения более концентрированного раствора с раствором низкой концентрации, приводящего к сниженйю1 движущей силы. Выгрузку выщелоченного твердого остатка производят периодически, чаще всего гидравлическим способом — вымывая твердый материал из аппарата водой. [c.586]

    Отмечена сложность исследования равномерности проникания твердых ча стйц в пористый слой при разделении малоконцентрированных суспензий с тонкодисперсными частицами и вязкой жидкой фазой, что объяснено совместным влиянием ряда микрофакторов и небольшой глубиной проникания [128]. Распределение частиц по толщине слоя исследовано с помощью установки для фотометрирования интенсивности свечения люминофорных частиц, аккумулированных слоем. На фильтре с горизонтальной перегородкой из лавсановой ткани поверхностью 22,4 см формировался слой перлита путем разделения его суспензии в кремнийорганической жидкости при концентрации 2,5%. Затем на фильтре разделялась суспензия люминофорных частиц в той же жидкости при концентрации 0,01—0,25% и постоянной разности давлений. Установлено, что аккумулирование частиц в пористом слое происходит на относительно небольшой глубине, которая не зависит от времени фильтрования при данной концентрации, но существенно увеличивается при ее уменьшении с повышением вязкости жидкой фазы глубина проникания частиц также увеличивается. Последнее объяснено следующим образом. При изменении направления движения жидкости в извилистой поре сила инерции приближает твердую частицу к стенкам поры, что сопровождается торможением частицы и уменьшением глубины ёе проникания в пористый слой. При увеличении силы трения, обусловленной повышением вязкости жидкости, приближение твердой частицы к стенкам поры затрудняется и глубина ее проникания в пористый слой увеличивается. [c.111]

    В дифференциальном насосе (см. рис. 8.1,з) объем Кз такой же, как в на сосе одностороннего действия, но движение жидкости в отводящей трубе более равномерное. Кроме того, в той же степени снижено усилие по штоку. Если / = f/2, то нагрузка на шток одинаковая независимо от направления движения поршня. В этом достоинство дифференциального насоса. Вследствие недостатков — наличия сальника и непроточной штоковой камеры, являющейся местом накапливания осадков (песка, утяжелителя и т. п.) и усложнения конструкции дифференциальный насос (см. рис. 8.1,з) распространения не получил. Однако в скважинном исполнении плунжерный вариант дифференциального насоса (см. рис. 8.1, г) оказался наиболее экономичным. [c.97]

    Для обычных технических целей задача об определении параметров пневмокомпенсатора удовлетворительно решается описанным методом. При правильном выборе и настройке гасители пульсаций придают возвратно-поступательным насосам положительные свойства машин вращательного действия — почти равномерное движение жидкости в присоединяемых к ним трубопроводах. [c.115]

    Тарелки, которые можно отнести также к перекрестно-прямоточным, изображены на рис. 60. В данных конструкциях ввиду наличия составляющей скорости газа, направленной в сторону движения жидкости, достигается увеличение производительности по сравнению с обычными ситчатыми тарелками. В последнем случае одностороннее направление потока паров осуществляется за счет отверстий, расположенных преимущественно с одной стороны 5-образного элемента. Отогнутые кромки элемента иод отверстиями создают увеличенную скорость газа при входе в отверстие, что способствует более равномерному вступлению тарелки в работу. К перекрестно-прямоточным провальным тарелкам можно отнести тарелки тииа Киттеля [164]. Движение жидкости на одной такой тарелке происходит по спирали от центра к периферии, на другой — ио радиусу от периферии к центру. Столь сложное движение жидкости осуществляется за счет кинетической энергии паров, так как пары выходят под определенным углом к основанию тарелки благодаря направлению просечки у листов основания. Слив жидкости на одной тарелке осуществляется у периферии, на другой — в центре. Организованное движение жидкости создает места ее скопления и увеличивает статическое давление жидкости в этих местах, что так же, как и на ситчатых волнистых тарелках, повышает их производительность. Кроме того, круговое движение пара в межтаре-лочном пространстве создает благоприятные условия для сепарации жидкости. Тарелки Киттеля в США имеют ограниченное применение и широко используются в других капиталистических странах. Текущие затраты на колонну с тарелками Киттеля составляют в среднем 65— [c.136]

    Перекрестноточные тарелки характеризуются наибольшей разделительной способностью, поскольку время пребывания жидкости на них наибольшее по сравнению с другими типами тарелок. Перекрестнопрямоточные тарелки по сравнению с перекрестноточными обладают (благодаря организации направленного движения жидкости по тарелке) повышенной производительностью и лучшей равномерностью работы по сечению колонны. Как перекрестноточные, так и перекрестнопрямоточные тарелки можно подразделить еще на два подтипа с нерегулируемым и регулируемым сечением контакта фаз. Последние (особенно балластные) по сравнению с таре лками с нерегулируемым сечением контакта фаз (колпачкового, желобчатого, 5-образного, ситчатого, струйного и др. типов) обладают значительно более широким диапазоном эффективной работоспособности и находят в последние годы преимущественное применение. [c.36]

    Роль распределительной головки в злектродегидраторе весьма разнообразна она должна не только обеспечивать веерообразное поступление сырья в зону между электродами, но и сообщать вытекающей из нее жидкости значительную скорость, чтобы эта жидкость, получив соответствующий запас кинетической энергии, двигалась в межэлектродном пространстве от центра к стенкам аппарата. При этом обеспечивается, во-первых, равномерная загрузка эмульсией всего электрического поля, создаваемого электродамп, во-вторых, поперечное движение жидкости в зоне между электродами. При движении по горизонтали, перпендикулярно электрическим силовым линиям поля разрушаются водяные цепочки, образующиеся вдоль этих линий и отрицательно влияющие на процесс деэмульгирования нефти. При наличии большого количества цепочек значительно повышается электропроводность столба жидкости между электродами, следовательно, резко увеличивается сила тока. При образовании сплошных цепочек от электрода к электроду возникает короткое замыкание. [c.53]

    Над решеткой находится слс(й подвижной пены, в котором движение газа происходит снизу вверх, а движение жидкости — по го-рйзонтали вдоль решетки с поступательной скоростью 0,02—1,0 м/с. Жидкость подают на решетку через патрубок в приемную коробку, которая обеспечивает равномерное поступление жидкости по всей ширине (или дуге сектора) решетки. Газ подают в подрешеточную часть через патрубок или диффузор. После взаимодействия с жидкостью газ выводится из аппарата через верхний штуцер, прнчем важно обеспечить равномерный отвод со всей плой ади сечения аппарата. Пройдя решетку, жидкость в виде пены поступает череа порог и сливное отверстие в сливную коробку, где пена разрушается и жидкость стекает через патрубок в гидравлический затвор. Освободившийся газ возвращается в аппарат. [c.17]

    Задачам свободной конвекции на изотермических или равномерно обогреваемых вертикальных пластинах уделялось большое внимание, поскольку они ие только отличаются простотой, ио и имеют практическое значение. Теоретические решения задач для этой геометрии большей частью основаны на предположениях о том, что пластина, погруженная в бесконечно большой объем жидкости, имеет бесконечную ширину и полуограничена по длине вверх по потоку движение жидкости ниже нижней кромки пластины отсутствует. iIeeмoтpя на эти упрощения получаемые решения дают правильные по структуре зависимости для корреляции экспериментальных данных. Аналогичный вид зависимостей оказывается пригодным и для других геометрий и условий. Поэтому сначала рассматриваются теоретические решения, а затем экспериментальные результаты. [c.274]


Смотреть страницы где упоминается термин Движение жидкости равномерное: [c.85]    [c.109]    [c.291]    [c.346]    [c.42]    [c.346]    [c.356]    [c.128]    [c.231]    [c.51]    [c.86]   
Лабораторный курс гидравлики, насосов и гидропередач (1974) -- [ c.111 ]

Справочник по гидравлическим расчетам (1972) -- [ c.22 ]

Справочник по гидравлическим расчетам Издание 5 (1974) -- [ c.22 ]




ПОИСК





Смотрите так же термины и статьи:

Движение жидкости

Пуазейля—Гагена равномерного движения жидкости в прямолинейном канал

Равномерное движение жидкости в открытых и закрытых каналах

Равномерное движение жидкости в открытых каналах

Уравнение равномерного движения реальной жидкости в прямолинейном канале

Формулы для определения средней скорости и расхода при равномерном движении жидкости



© 2025 chem21.info Реклама на сайте