Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные соединения

    Бром образует несколько кислородных соединений. Из них отметим НВгО — бромноватистую и НВгОз — бромноватую кислоты. Эти кнслоты дают ряд солей. Бром в них соответственно +1-и +5-валентен. Хотя атом брома во внешнем слое содержит 7 электронов, соединения положительно семивалентного брома в настоящее время неизвестны. [c.526]


    Образование соедивений в металлических системах. В противоположность примитивным типам взаимодействий металлохимические реакции, приводящие к образованию соединений, можно условно отнести к сложным типам. Основное от.личие этих процессов заключается в возникновении при взаимодействии качественно нового химического индивида, характеризующегося своеобразными структурой и свойствами по сравнению с исходными компонентами. По мере нарастания взаимного химического сродства металлов образующиеся соединения приобретают все более ярко выраженную индивидуальность. В зависимости от того, какой из металлохимических факторов преобладает при взаимодействии, возникают фазы различного типа соединения Курнакова, фазы. Лавеса, фазы внедрения, электронные соединения Юм-Розери и, наконец, соединения, отвеча- [c.214]

    Теряя электроны, атомы превращаются в положительные ионы с зарядностью 1+ и 2+. Они относятся к типу благородногазовых ионов, бесцветны, обладают большим радиусом и малыми поляризующими свойствами. Большинство соединений их бесцветны, обладают высокой термической устойчивостью, хорошей растворимостью в воде. Ряд соединений лития и бериллия (несколько менее натрий и магний) отличаются от остальных своих аналогов по подгруппам. Это связано с небольшими величинами радиусов их ионов и особенностями структуры электронной оболочки последних, во внешнем слое которой содержится по 2 электрона, тогда как все другие ионы имеют по 8 электронов. Соединения лития во многом сходны с соединениями магния, а соединения бериллия — с соединениями алюминия (аналогия по диагонали). Ионы лития и бериллия образуют комплексные соединения, что для ионов щелочных и щелочноземельных металлов, как правило, нехарактерно. Большинство соединений имеют гетерополярный тип связи и могут быть отнесены к ионному типу молекул. В растворе все соединения ведут себя как сильные электролиты. [c.270]

    Производные алюминия и бора, имеющие неподеленную пару электронов, могут взаимодействовать с донорами пары электронов — соединениями азота и кислорода — в неполярных средах и даже в газовой фазе. Например, BF3 в газовой фазе взаимодействует с аминами с большой скоростью, образуя соответствующие донорно-акцепторные комплексы  [c.113]

    В ненасыщенных соединениях многие химические и физические свойства определяются небольшой частью электронов, заселяющих л-орбитали, так называемыми я-электронами. Соединения с кратными связями обладают повышенной реакционной способностью, большой поляризуемостью, характеризуются сильным влиянием донорных и акцепторных заместителей на электронную структуру и спектры поглощения. Электронные спектры поглощения сопряженных молекул в видимой и ближней УФ-области обусловлены возбуждениями л-электронов. [c.239]


    Существование большой группы интерметаллических соединений разнообразного качественного и количественного состава, но сходных по физико-химической природе, обусловлено преимущественным влиянием фактора электронной концентрации. Все эти фазы обладают металлическим характером и кристаллизуются в структурах трех типов р-латуни (ОЦК), -латуни (сложная кубическая структура с 52 атомами в ячейке) и е-латуни (ГПУ). Тип кристаллической структуры определяется не свойствами взаимодействующих компонентов, а так называемой формальной электронной концентрацией (ФЭК), т. е. отношением общего числа валентных электронов (соответствующих номеру группы) к числу взаимодействующих атомов в формульной единице. Эти фазы называются электронными соединениями Юм-Розери. Впервые они были обнаружены в системе Си—2п, и в 1926 г. Юм-Розери выявил закономерности образования подобных фаз. Обычно электронные соединения образуются в системах, содержащих, с одной стороны, [c.385]

    В химических соединениях хром чаще всего проявляет положительную валентность, равную 2, 3 и 6. Соединения двухвалентного хрома малоустойчивы так как Сг + является достаточно сильным восстановителем и легко отдает электроны. Соединения трехвалентного хрома более устойчивы. При соответствующих условиях, преимущественно в щелочной среде, Сг + окисляется до шестивалентного состояния. Для последнего характерно образование устойчивых комплексных ионов СгО/ и СгаО, , которые, будучи сильными окислителями, легко восстанавливаются иодистым водородом, сероводородом и др. с образованием соединений трехвалентного хрома. [c.321]

    См. рис. 74. Рассмотрим вначале тетраэдрическое 8-электронное соединение (1). Гомолитический разрыв связи С—Н приводит к образованию метильного радикала (2).Этот радикал имеет одну граничную орбиталь, направленную к отрывающемуся атому водорода. Отрыв второго атома водорода приводит к образованию бирадикала метилена (3). В этом случае получаем две гибридные орбитали. Отрыв третьего атома водорода приводит к системе (4) с тремя гибридными орбиталями. [c.223]

    Другой разновидностью интерметаллидов следует считать электронные соединения, смысл которых следует пояснить. Считают, что в металлах, а также их сплавах концентрация свободных электронов определяется числом валентных электронов, приходящихся на каждый атом [c.344]

    Металлохимические свойства и диаграммы состояния. По мере усложнения химической организации вещества в ряду соединения Курнакова — фазы Лавеса — фазы внедрения электронные соединения Юм- Диаграмма состояния Розери — происходит нарастание ка- системы медь —цинк Таблица 23. Характеристика некоторых электронных соединений Юм-Розери [c.387]

    В изо.ляторе , наоборот, валентная зона заполнена и отсутствует перекрывание с зоной проводимости. Запрещенная зона между этими двумя зонами велика. Электроны соединения — изолятора — [c.119]

    В периодической системе 1УВ-подгруппа объединяет титан, цирконий, гафний и мало еще исследованный курчатовий. Атомы их содержат два 5-электрона на внешнем уровне и два на -подуровне соседнего с ним уровня, т. е. имеют конфигурацию Высшая положительная степень окисления -Ь4 проявляется, когда атомы теряют эти четыре электрона. Соединения со степенью окисления +3 и +2 нестойки, прочность их убывает в направлении Т1—Н1. [c.408]

    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]

    Из всего этого следует, что основой устойчивости рассмотренных фаз служат значения электронной концентрации, которые определяют собой предельный состав, при котором данная фаза стабильна. Большинство электронных соединений Юм-Розери представляют соединения переменного состава, относящиеся к классу бертоллидов. На диаграммах состояния им отвечают обычно широкие области гомогенности. На кривых зависимости свойств от состава в области существования соединений сингулярные точки отсутствуют. [c.221]


    Цинтля, доминирующей является металлическая связь. При этом возникают металлиды с плотноупакованными кристаллическими структурами. Формальные стехиометрические соотношения при этом не соблюдаются в силу коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к образованию соединений Курнакова, фаз Лавеса, электронных соединений Юм-Розери и т.п. [c.262]

    В противоположность примитивным типам взаимодейстций металлохимические реакции, приводящие к образованию соединений, можно условно отнести к сложным типам. Основное отличие этих реакций заключается в возникновении при взаимодействии качественно нового химического индивида, характеризующегося своеобразными структурой и свойствами по сравнению с исходными компонентами. По мере нарастания взаимного химического сродства металлов о азующиеся соединения приобретают все более ярко выраженную индивидуальность. В зависимости от того, какой из металлохимических факторов преобладает при взаимодействии, возникают фазы различного типа соединения Курнакова, фазы Ла-веса, фазы внедрения, электронные соединения Юм-Розери и, наконец, соединения, отвечающие правилу формальной валентности. Последние соединения возникают при взаимодействии металлов с неметаллами, когда преобладает фактор электроотрицате льности, и В рамках металлохимии обычно не рассматривается. Тем не менее для получения полной картины взаимодействия металло з этот случай целесообразно рассмотреть в общей связи. [c.378]

    Характер УФ-спектров определяется тремя основными структурными элементами — одинарной связью, кратной связью и иено-деленной парой электронов. Соединения, содержащие только одинарные связи, поглощают в области длин воли менее 170 нм, простые соединения со свободными электронными парами — ниже 260 нм. [c.84]

    Закоиомер]юстн образования этих соединений обычно обусловлены металлохимическими параметрами низшего порядка — размерным фактором и электронной концентрацией. Типичными представителями интерметаллических соединений являются электронные соединения Юм-Розери, фазы Лавеса, соединения Курнакова Последние со структурной точки зрения близко примыкают к твердым растворам, в чем проявляется единство непрерывности и дискретности при химическом взаимодействии. [c.78]

    Большинство электронных соединений Юм-Розери представляют собой соединения переменного состава, относящиеся к классу бертоллндов. На диаграммах состояния им отвечают обычно широкие области гомогенности. На кривых зависимости свойства от состава в области существования соединений сингулярные точки отсутствуют. [c.387]

    Индий образует интерметаллические фазы (бертоллидного типа) с некоторыми близкими металлами, такими, как олово и свинец. 1Целый ряд фаз (так называемых электронных соединений) образуется в системах с металлами подгруппы меди. Большим числом интерметаллических соединений характеризуются системы индия с магнием, никелем, редкоземельными металлами. [c.297]

    Что касается остальных d-элементов, то во всех их состояниях, начиная с третьей ступени окисления, доминируют d-электроны соединения первой ступени окисления в большинстве своем неустойчивы, а на второй ступени окисления, когда теоретически следовало бы ожидать явления вторичной периодичности, положение возможно осложняется (из-за незаполненнрсти d-оболочки) расщеплениями энергетических уровней. Кроме того, все ранние d-элементы вообще могли бы испытывать на себе влияние лишь [c.125]

    Большой интерес представляют фторидные нечетные радикалы BF2, F, Fg, AIF2, SiF, SlFg, для которых существенна способность их к дисмутации на молекулы соседних четко-электронных соединений  [c.322]

    Подобным образом решетка 7-латуни возникает, когда число электронов на один атом равно 1,61 (Си52па, СигА1 и т. д.), а гексагональная плотноупакованная, когда это число достигает 1,75. Возникновение этих так называемых электронных соединений связано с существованием зоны энергий электронов. [c.354]

    Существование большой группы интерметаллических соединений разнообразного качественного и количественного состава, но сходных по физико-химической природе, обусловлено влиянием фактора электронной концентрации. Все эти фазы обладают металлическим характером и кристаллизуются в структурах трех типов / -латуни (ОЦК), 7-латуни (сложная кубическая струк гура с 52 атомами в элементарной ячейке) и е-латуни (ГПУ). Тип кристаллической структуры опре-д( ляется не свойствами взаимодействующих компонентов, а так называемой формальной электронной концентрацией (ФЭК), т.е. отношением общего числа валентных электронов (соответствующих номеру группы) к числу взаимодействующих атомов в формульной единице. Эти фазы называются электронными соединениями Юм-Розери. Обычно электронные соединения образуются в системах, содержащих, с одной стороны, элементы 1В- и УП1В-групп, а с другой — металлы ПВ-, П1А-И 1УА-групп. Эти соединения не подчиняются классическим прави.лам валентности, и их состав определяется лишь формальной электронной концентрацией. Трем видам электронных соединений соответствует определенная формальная электронная концентрация. Так, для ОЦК-структуры /3-латуни ФЭК = = 21/14 = 3/2 (числитель — общее число валентных электронов, знаменатель — число атомов в формульной единице соединения). Сложная структура 7-латуни определяется величиной ФЭК, равной 21/13, а структуре е-латуни (ГПУ) отвечает ФЭК = 21/12 = 7/4. Примеры типичных электронных соединений в различных системах приведены в табл. 20. Обращает на себя внимание существенно различный состав соединений Юм-Розери, кристаллизующихся в одинаковом [c.219]

    Т а б л и ц а 20. Характ истика некоторых электронных соединений Юм-Роаери [c.220]

    Смысл определяющего влияния ФЭК на состав и структуру электронных соединений можно понять с привлечением представлений зонной теории. Каждой кристаллической структуре отвечает характерный для нее зонный энергетический спектр электронов. Валентная зона заполняется электронами не беспредельно и вмещает только определенное их число. По заполнении зоны наступает такой момент, когда энергия электронов так резко повышается, что данная структура оказывается нестабильной и происходит изменение кристаллического строения сплава. Возникаюшдя при этом новая структура будет соответствовать большей электронной концентрации. В качестве примера рассмотрим систему медь — цинк (рис. 114). Чистая медь имеет ГЦК-структуру (кубическая плотнейшая упаковка). При плавлении меди с возрастающим количеством цинка (до 37%) атомы цинка замещают часть атомов меди статистически без изменения типа кристаллической структуры матрицы. Образуется -твердый раствор, которому отвечает вполне определенная область электронной концентрации. Эта [c.220]

    Металлохимия. Роль и значение. элементов подгруппы меди в металлохимии трудно переоценить. Достаточно сказать, что впервые соединения Курнакова были открыты в системе Си—Аи, фазы Лавеса — в системе Си—Mg, а электронные соединения Юм-Розери изучены в системе Си—гп. Ниже приведена характеристика взаимодействия этих мета,т1лов друг с другом  [c.314]

    Бесцветный в кристаллическом состоянии гексафенилэтан при растворении в неполярных растворителях, таких, как бензол, образует желтый раствор. Растворенный гексафенилэтан легко-реагирует с кислородом воздуха, образуя перекись трифенилметила, и с иодом, давая иодистый трифенилметил. Кроме характерной окраски этот раствор обладает парамагнетизмом, т. е. способен определенным образом вести себя в магнитном поле, что характерно для соединений, имеющих неспаренные электроны. Соединения, имеющие только спаренные электроны,, диамагнитны, т. е. не способны к подобному взаимодействию с магнитным полем. Эти особенности растворов гексафенилэтана были интерпретированы, исходя из предположения о л иссоциа-ции соединения на радикалы трифенилметила  [c.277]

    Металлы второй группы периодической системы — бериллий, магний, кальций, стронций, барий и радий — называют щелочноземельными металлами. Некоторые свойства этих элементов приведены в табл. 18.2. Щелочноземельные металлы обладают значительно большей твердостью и меньшей реакционной способностью, чем щелочные металлы, поскольку имеют вдвое больше валентных электронов. Соединения щелочноземельных элементов аналогичны по своему составу все они образуют окислы МО, гидроокиси М(0Н)2, карбонаты МСОз, сульфаты MSO4 и другие соединения (М=Ве, Mg, Са, Sr, Ва и Ra). [c.521]

    В ароматических углеводородах (рис. 10.4) делокализация к-электронов происходит в еше большей степени. Во всех циклических полиенах (С Н ) молекулярные тг-орбитали образуют вырожденные пары, за исключением низшей л-ор-битали и (в циклических полиенах с четным числом атомов углерода) высшей л-орбитали. В циклопропениле имеются три л-орбитали одна связывающая и две разрыхляющие, которые вырождены (т.е. имеют одинаковую энергию). На этих орбиталях располагаются три электрона два на связывающей орбитали и один на одной из разрыхляющих орбиталей. Если удалить электрон из циклопропенильного радикала, образующийся катион циклопропенилия будет иметь полностью делокализованную ВЗМО, охватывающую три атома углерода и занятую парой электронов. Соединения [c.90]


Смотреть страницы где упоминается термин Электронные соединения: [c.316]    [c.4]    [c.386]    [c.386]    [c.386]    [c.387]    [c.388]    [c.388]    [c.390]    [c.47]    [c.221]    [c.221]    [c.221]    [c.222]    [c.46]    [c.76]   
Смотреть главы в:

Структурная неорганическая химия Том3 -> Электронные соединения

Структурная неорганическая химия Т3 -> Электронные соединения


Структурная неорганическая химия Том3 (1988) -- [ c.3 , c.484 ]

Структурная неорганическая химия Т3 (1988) -- [ c.3 , c.484 ]

Строение неорганических веществ (1948) -- [ c.44 ]




ПОИСК







© 2025 chem21.info Реклама на сайте