Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния титане и его сплавах

    Этот метод удобен для регулярных анализов. Он применим для определения магния в металлическом титане, титановой губке и сплавах, содержащих до 5% алюминия, молибдена и олова. С успехом можно анализировать и титановые сплавы, содержащие до 1 % железа и 0,5% хрома. Метод используется для анализа сплавов, содержащих количества железа и хрома, вдвое превышающие указанные выше допустимые пределы, но начальную навеску пробы или аликвотную часть раствора необходимо вдвое уменьшить. [c.53]


    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Описан экстракционно-фотометрический метод одновременного определения алюминия и железа. Принцип метода состоит в том, что хлороформный экстракт оксихинолинатов алюминия и железа фотометрируют при 390 при 470 ммк. Метод использован для определения алюминия и железа в титане и ванадии [187]. Аналогичный вариант применен для определения алюминия и железа в магнии [188]. Экстракция оксихинолината железа и фотометрирование экстракта использованы для определения железа в крови [189]. Ванадий экстрагируют хлороформом в виде оксихинолината при pH 3,5—4,5 и полученный экстракт фотометрируют при 550 ммк [190]. Методики экстракционно-фотометрического анализа в виде оксихинолинатов разработаны для определения цинка и кадмия в присутствии больших количеств кальция [191], кальция в солях, технических продуктах и породах [192], олова в железе и стали [193], урана в присутствии тория, лантана, иттрия или самария [194] и в висмутовых сплавах [195]. Цинк и магний в форме оксихинолинатов легко экстрагируются метил-изобутил кетоном. Экстракты имеют максимумы светопоглощения [c.243]

    Реакция протекает в щелочной среде при pH = 12 ч-13,2. Раствор реагента при этом значении pH винно-красного цвета, который в присутствии ионов бериллия переходит в сине-фиолетовый до синего в зависимости от количества присутствующего бериллия. Оптическую плотность раствора измеряют в фотометре или фотоколориметре при Лэфф = 620 нл (ммк) (оранжевые светофильтры), Окраска устойчива в течение 18 ч. При содержании от 0,001 до 6—7% Ве его определяют непосредственно на фоне основы сплава алюминия в растворе, полученном после растворения сплава в щелочи или в кислоте с последующим переведением кислого раствора в щелочной. Присутствующие часто в сплавах магний, медь, железо, марганец, титан, цирконий при этом осаждаются щелочью в виде гидроокисей и дальнейшему определению бериллия не мешают, так же как алюминий и цинк. [c.151]


    Для определепия магния в металлическом титане и его сплавах предложены так ке фотометрические методы с солохром-цианином R [610], пикраминазо [104] и магнезоном [58]. Гравиметрический фосфатный [598] и комплексонометрический [955, 1101] методы определения магния малочувствительны и к образцам с малым содержанием магния неприменимы. [c.215]

    Определению магния с феназо мешают железо, алюминий, медь, цинк, никель, марганец, титан. Присутствие растворимых карбонатов и силикатов оказывает незначительное влияние, что позволяет определить магний в карбонатсодержащих природных водах, а также применять реактив при анализе многих сплавов, требующих для своего растворения едкий натр, которой может содержать примеси карбонатов или силикатов. [c.35]

    Определение магния в металлическом титане с последующим удалением титана экстракцией его купферата хлороформом см. С h а 1 1 i s H. J. G.. Wood D. F., Analyst. 79. 762 (1954). Эти авторы для анализа сплавов титана, где требуется дальнейшее разделение, предпочитают титановому желтому солохром цианин R-200. [c.542]

    Для определения редкоземельных элементов в бериллии, уране и титане, а также в их сплавах и окислах, Калман с сотрудниками [40 ] рекомендуют соосаждение с фторидами кальция и магния и последующее катионообменное разделение. Ионы фтора удаляют прокаливанием, а редкоземельные элементы поглощают катионитом из М НС1. Кальций и магний элюируют той же кислотой. Наконец, редкоземельные элементы удаляют из колонки и определяют спектральным методом. Отделение редкоземельных элементов от цинка можно осуществить также в хлоридном растворе. В качестве элюента Фриц и Каракер [21 ] применили 0,1М раствор хлорида этхглен-диаммония вначале элюируется цинк, а затем — лантан. [c.327]

    Например, Zr U практически совершенно нерастворим в четыреххлористом титане, а в присутствии хлористого алюминия (легкоплавкий сплав, содержащий 17 вес.% Zr U и 83% Al lg) растворяется в значительных количествах. Это свойство представляет известный интерес для получения сплавов титана с другими металлами восстановлением натрием или магнием растворов хлоридов в четыреххлористом титане определенной концентрации. [c.166]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]

    Определению меди не мешают титан (IV), железо (III), марганец, алюминий, молибден, кальций, магний и хром (III) при содержании последнего до 10%. Метод применим при содержании меди в алюминиевых сплавах от 0,0005 до 10%. Точность метода такая же, как и карбаминатного (см. стр. 67). [c.70]

    Т. А. Белявская и Э. П. Шкробот [25] разработали ряд методов отделения алюминия от железа и титана, основанные на амфотерности алюминия. После поглощения анализируемой смеси катионитом СБС в Н-форме алюминий избирательно извлекался из колонки 10 %-ным раствором едкого натра, титап или железо десорбировали 2 N раствором соляной кислоты в фильтратах железо определяли колориметрически с роданидом аммония, титан — колориметрическ1г с перекисью водорода, алюминий в форме оксихинолипата. Эти же авторы показали возможность разделения смеси алюминия и цинка 5%-пой лимонной кислотой с pH И в этом случае алюминий быстро вымывался из колонки катионита, а цинк оставался в сорбированном состоянии в форме комплексного аммиаката. Разработанные методики Т. А. Белявская и Э. П. Шкробот успешно применили к определению железа, алюминия и цинка в их сплавах, причем продолнжтельность анализа сокращалась примерно в 2 раза. При изуче-нг ТИ хроматографического разделения смесей меди, алюминия и магния Д. И, Рябчиков и В. Ф. Осипова [26] показали, что магний и алюмииий. легко разделяются путем промывания колонки щелочью если пропускать через колонку щелочной аммиачный раствор, то медь поглощается в форме комплексного аммиаката, а алюминий в форме алюмината переходит в фильтрат. [c.131]

    Куркуминовый метод благодаря исключительно высокой чувствительности пригоден для определения очень малых количеств бора. Работы по применению куркуминового метода включают определение бора в кремнии ]2, 41—44], хлорсиланах [26, 41, 45], германии [2], уране [35, 46, 47], цирконии и его сплавах [35, 48—50], гафнии и титане 150], никеле [51, 52], стали [5, 35, 53], металлическом натрии [13], бериллии и магнии [35], силикатах ]54], фосфатах [55], почве [56], растительных материалах [32, 56], химических реагентах [57, 58] и морской воде [59]. [c.119]



Смотреть страницы где упоминается термин Определение магния титане и его сплавах: [c.16]    [c.57]    [c.6]    [c.738]   
Аналитическая химия магния (1973) -- [ c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Магний сплавы

Сплавы титана



© 2025 chem21.info Реклама на сайте