Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экстракционно-фотометрический анализ

    Описан экстракционно-фотометрический метод одновременного определения алюминия и железа. Принцип метода состоит в том, что хлороформный экстракт оксихинолинатов алюминия и железа фотометрируют при 390 при 470 ммк. Метод использован для определения алюминия и железа в титане и ванадии [187]. Аналогичный вариант применен для определения алюминия и железа в магнии [188]. Экстракция оксихинолината железа и фотометрирование экстракта использованы для определения железа в крови [189]. Ванадий экстрагируют хлороформом в виде оксихинолината при pH 3,5—4,5 и полученный экстракт фотометрируют при 550 ммк [190]. Методики экстракционно-фотометрического анализа в виде оксихинолинатов разработаны для определения цинка и кадмия в присутствии больших количеств кальция [191], кальция в солях, технических продуктах и породах [192], олова в железе и стали [193], урана в присутствии тория, лантана, иттрия или самария [194] и в висмутовых сплавах [195]. Цинк и магний в форме оксихинолинатов легко экстрагируются метил-изобутил кетоном. Экстракты имеют максимумы светопоглощения [c.243]


    Экстракционно-фотометрический метод основан на сочета-иии экстракции определяемого вещества с его последующим фотометрическим определением. Этот метод применяют при анализе сложных смесей, когда нужно определить малые количества одних веществ в присутствии больших количеств других, при определении примесей в присутствии основных компонентов, а также в тех случаях, когда непосредственное определение интересующего элемента в смеси связано с большими трудностями. При экстракции малых количеств примесей происходит не только их выделение, но и концентрирование. Поэтому экстракционно-фотометрический метод приобретает особо важное значение в связи с определением малых количеств примесей в веществах высокой степени чистоты, широко применяемых в атомной и полупроводниковой технике. Экстракционнофотометрические методы анализа являются высокочувствительными методами, они быстро развиваются и очень перспективны. [c.201]

    Например, работа Новый метод экстракционно-фотометрического анализа смесей алкалоидов может быть отнесена к следующим рубрикам  [c.240]

    Холостая проба на основу по составу полностью аналогична анализируемой пробе и отличается от нее только отсутствием определяемого компонента. Измерение относительно такого истинного холостого раствора позволяет скорректировать аналитический сигнал (оптическая плотность, интенсивность излучения) на все постоянные помехи, включая наложение сигналов всех компонентов и основы пробы. К сожалению, создание таких истинных холостых проб возможно лишь в редких случаях. Например, при экстракционно-фотометрическом анализе морской воды на железо и медь ею может служить сама морская вода, из которой предварительно экстракцией количественно и селективно удалены эти металлы. [c.46]

    Продолжаются ранее начатые систематические исследования 8-меркаптохинолина как аналитического реагента. Работы последних лет, как и прежние, тесно связаны с применением этого реагента в экстракционно-фотометрическом анализе. На основании многочисленных экспериментальных данных показано, что [c.250]

    Важное значение в экстракционно-фотометрическом анализе приобретает применение косвенных методов. Это направление является весьма перспективным. В косвенных методах используются главным образом реакции комнлексообразования. Для выбора наиболее эффективной системы важно знать константы нестойкости комплексов, принимающих участие в реакции. В одних случаях определение производится по интенсивности возникшего продукта реакции (например, медь-карбаминат свинца), в других — по ослаблению окраски комплекса, с которым взаимодействует определяемый ион (например, фторид-роданид железа). Известны и другие типы систем, которые используются в косвенных методах. Ниже приведены примеры использования этих методов. [c.257]


    Так, литература по экстракционно-фотометрическому анализу смесей алкалоидов в систематическом каталоге будет располагаться в разделах, посвященных химии Методы аналитической химии (экстракция), Методы анализа органических веществ (экстракция), Количественный микрохимический анализ (экстракция) физике Фотометрические методы. Определение оптической плотности (экстракция) медицине Фармакология вопросы очистки лекарственных веществ, определение ядовитых веществ технике Способы разделения и очистки смесей, Методы получения и анализ веществ осо-бой чистоты. Криминалистические исследования юридическим наукам Следственная практика, Использование методов химии, технологии и анализа в следственном деле. [c.250]

    В книге в доступной форме рассмотрены теоретические расчеты и обоснования, используемые в химических и экстракционно-фотометрических методах анализа неорганических веществ. Главы V и VI, посвященные теоретическим расчетам и обоснованиям в экстракционно-фотометрическом анализе, а также часть материала в главах II—IV в значительной степени основаны на собственных работах автора. Единообразие теоретического подхода к различным методам анализа проявляется в термодинамическом обосновании условий проведения анализа, которое обеспечивается использованием в расчетах условных констант, т. е. таких характеристик, которые позволяют количественно оценить состояние рассматриваемых равновесий в реальных условиях и учесть влияние побочных конкурирующих реакций. Сознательное регулирование степени протекания побочных конкурирующих реакций используется зд есь как инструмент направленного смещения основного равновесия, обеспечивающего выполнение поставленных целей и задач. Применение условных констант дает возможность быстро установить как суммарное количественное влияние тех или иных факторов на основное рассматриваемое равновесие, так и каждого из них в отдельности — и в этом проявляется основное методическое преимущество такого подхода, которое особенно ощутимо при проведении теоретического прогнозирования. [c.3]

    В общем случае при единичных определениях и при ориентировочно известном диапазоне определяемых содержаний целесообразно использовать метод добавок или метод сравнения при массовых анализах — метод градуировочного графика. При определении следовых количеств обычно применяют абсолютный фотометрический анализ, а для повышения чувствительности и селективности — экстракционно-фотометрический. При массовом содержании определяемых элементов примерно 1 — 10 % предпочтителен дифференциальный фотометрический анализ, обеспечивающий большую воспроизводимость результатов [см. уравнения (4.23), (4.24) и табл. 4.2]. В частности, экспресс ный дифференциальный фотометрический анализ ряда компонентов в технологии многотоннажных минеральных удобрений позволяет намного сократить и упростить анализ исходного сырья, технологических растворов, готовой продукции. [c.217]

    Оборудование ЦЗЛ и ХАЛ зависит не только от средств, выделяемых на развитие аналитической службы, но и от типа технологического процесса, вида полупродуктов и готовой продукции. Основное оборудование — спектрографы, квантометры, хроматографы. В ряде производств используют также экстракционные, фотометрические, ионометрические, титриметрические методы и др. Так, на металлургических комбинатах, где полупродуктами и продуктами являются металлы и сплавы, до 75% анализов проводят спектральными методами на вакуумных и рентгеновских кванто-метрах и экспресс-анализаторах. [c.230]

    В количественном фармацевтическом анализе экстракцию часто сочетают с каким-либо физико-химическим методом. Разработаны экстракционно-фотометрические, экстракционно-хроматографические и другие комбинированные методы количественного анализа. [c.258]

    Светопоглощающий заместитель 5 может быть малорастворимым в воде. Тогда его извлекают из водной среды подходящим экстрагентом и измеряют светопоглощение экстракта. Такой способ проведения анализа называют экстракционно-фотометрическим методом. При пользовании этим методом формулы (21.6) — (21.9) остаются в силе, только вместо объема водной фазы V следует подставить объем экстракта [c.294]

    Кузнецов В. И. Химические основы экстракционно-фотометрических методов анализа. М., Госгеолтехиздат, 1963. [c.185]

    Титан (до 5-10 %) определяют экстракционно-фотометрическим методом по интенсивности окраски экстракта роданидного комплекса титана(1У) в метилизобутилкетоне с ошибкой до 2% для проведения анализа требуется значительный избыток роданида [1235]. [c.272]

    Упомянутые ниже продукты трудно классифицировать по происхождению или концентрации в них золота ввиду разнообразия объектов. Для их анализа используют титриметрические [197, 939], фотометрические[633,856], экстракционно-фотометрические[35, 72, 110, 222, 449, 1177, 1284], каталитические [634, 635], полярографические [51, 180, 535, 667, 1141], спектральный [4], атомноабсорбционный [187], рентгенофлуоресцентный [864, 1092] и активационные [131, 308, 874, 895, 1414, 1532] методы. [c.204]


    Экстракционно-фотометрический метод определения ЧАС (Метод Ауэрбаха) также используется в контроле качества мягких лекарственных средств [5,6]. Метод основан на перераспределении красителя (бромтимолового синего, бромфенолового синего, метиленового голубого и др.) в водно-хлороформенном слое в присутствии буфера. Реакция является избирательной как для количественного, так и для качественного анализа ЧАС. [c.545]

    Имеются и другие органические реагенты, содержащие оксим-ную группу, которые применяются в экстракционно-фотометрическом анализе. Так, разработан экстракционно-фотометричес-кий метод определения никеля с помощью 4-изопропил-1,2-ци1 -логександиоксима. Метод применен для определения следовых количеств никеля в воде, соляной кислоте, сплаве натрия с литием, мета.члическом литии и других материалах [211]. Аналогичный способ, основанный на извлечении никеля в виде его соединения с 4-метилциклогексан-1,2-диондиоксимом, использован для определения никеля в присутствии ванадия, тория, меди, хрома и железа [212]. Комплекс никеля с а-фурилдиоксимом применен для экстракционно-фотометрического оиределения пн- [c.244]

    Синий роданидный комплекс кобальта также применяется в экстракционно-фотометрическом анализе [1329], экстракция повышает чувствительность метода (хотя она невысока и в этом случае) и помогает исключить влияние ряда мешающих элементов. Оптическую плотность измеряют обычно при 600—620 нм. В ка- честве растворителя часто применяли смесь амилового спирта и ДЭЭ (например [998]). Адамец [1004] предложила метод определения кобальта в никеле, основанный на экстракции комплекса Со — S N - ДАПМ. [c.316]

    Из иодидных комплексов в экстракционно-фотометрическом анализе применяется желтый или оранжевый анионный комплекс висмута В1Т4, который можно экстрагировать различными кислородсодержащими растворителями, например смесью амилового спирта с этилацетатом [608, 616] или изоамиловым спиртом [609]. В последнем случае оптическую плотность экстракта измеряют ири 450 нм. Танака и Такаги [1854] экстрагировали циклогексаном иодиды 8н(1У), А8(Ш) и Ое(1У) и спектрофотометровали экстракт олова(1У) при 364 нм (е = 8,7 -10 ), мышьяка — при 282 нм (е = 9,7 -10 ) и германия при 360 нм (г = 6,6 -10 ). Метод использован для определения олова в соке цитрусовых, олова и мышьяка в стали и германия в его концентратах. [c.318]

    Перекрывание полос поглощения делает невозможным и надежный анализ смесей органических соединений, поскольку они фактически все поглощают в одной и той же спектральной области. Попытки преодолеть эти трудности с помощью техники спек-трофотометрирования (например, метод Фирордта) или на основе предварительного выделения целевых компонентов (например, экстракционно-фотометрический анализ) в случае реального анализа смесей органических соединений успеха не имеют. [c.262]

    Экстракция разнолигандных комплексов — одно из наиболее интенсивно развивающихся направлений в аналитической химии, при этом разнолигандные комплексы используют для прямого определения не только ионов металлов-комплексообра-зователей, но и анионов-реагентов (лигандов). Разнообразие лигандов при образовании смешанных экстрагирующихся комплексов значительно расширяет возможности в повышении чувствительности и избирательности экстракционно-фотометрических методов анализа. [c.201]

    На примере анализа медного порошка показано, что при содержании ЗЬ 4-10 % ошибка < 7,5%. Стибин предложено также поглощать хлороформным раствором диэтилдитиокарбамината серебра, содержащим 1,10-фенантролин [1670]. Хотя этот метод несколько уступает по чувствительности экстракционно-фотометрическим методам с применением основных красителей, но уже в настоящее время превосходит их по воспроизводимости результатов. Замена цинка, используемого для получения ЗЬНд, борогидридом натрия позволит существенно снизить значение холостого опыта и тем самым повысить чувствительность метода. [c.58]

    После переведения всего золота в форму AU I4 его концентрируют. Для этого можно использовать иониты [629] или другие способы концентрирования. Из цианидного раствора объемом до 500золото осаждают на цинковой пыли [861] (см. главу 4), восстанавливают цинком в присутствии солей свинца [1526], алюминиевой фольгой [1359], соосаждают с сульфидом кадмия [249] (см. главу 4), восстанавливают перекисью водорода при анализе богатых золотом цианидных растворов электролитических ванн [1260]. Определение заканчивают гравиметрически (260, 861, 1260, 1292, 1359, 1526). Часто золото определяют титриметрически. В качестве титрантов используют гидрохинон 1 192, 204, 212], дитизон [939, 1114], иодид калия [551, 776, 778] с оттитровы-ванием выделившегося иода подходящим титрантом (см. главу 5). Весьма перспективны фотометрические и особенно экстракционно-фотометрические методы определения [74 а, 135, 136, 593 (см. главу 6), 732, 746, 875, 1335]. Г азработаны полярографические [180, 849, 1117, 1183], химико-спектральные [518, 1354], атомно-абсорбционные [1003, 1406, 1435] методы, позволяющие определять 0,01—100 мг/л золота. Методы определения золота в цианидных растворах рассмотрены в работе [74а]. [c.203]

    Для определения ЗЬ в кадмии наиболее часто применяются методы спектрального анализа, позволяющие определять ЗЬ как без концентрирования [598, 599], так и с предварительным концентрированием [716, 717, 727, 1007]. Метод [598, 599] спектральною определения ЗЬ > 1-10 % ( 5 г<0,2), а также Си, Ag, В1, Со, N1, РЬ, Т1, Зп и 7п в кадмии основан на испарении пробы в виде королька из анода угольного электрода. В ряде спектраль-1Г)>гх методов ЗЬ и другие примеси в кадмии концентрируют цементацией на небольшом количестве цинкового порошка [1007], соосаждением с МпОз [707], отделением основной массы кадмия экстракцией СНСЦ в виде пиридин-иодидного комплекса [727] или соосаждением примесей с небольшой частью основы в виде гидроокиси [716]. Предел обнаружения ЗЬ 1 10 —5-10 % Зу = 0,20,3). Для определения ЗЬ > 5-10 % (3,. = 0,10-н н- 0,20) в кадмии предложен ряд экстракционно-фотометрических методов с использованием в качестве реагентов метилового фиолетового [456] и кристаллического фиолетового [443, 470, 657]. [c.133]

    В свинце, его сплавах, окислах, рудах и продуктах их переработки наиболее часто Sb определяют методами спектрального анализа (табл. 13). В указанных материалах Sb определяют также фотометрическими методами. Так, Sb 5 10 % в свинцовой аккумуляторной массе определяют без ее отделения с применением фенилфлуорона [425, 627]. Для определения Sb в свинце предложен метод, включающий отделение его в виде PbS04 и определение Sh с фенилфлуороном [1084]. В большинстве случаев при определении SJi в свинце предусматривается отделение ее соосаждением с МнОз и последующим определением Sb в полученном концентрате экстракционно-фотометрическим методом в виде гексахлоростибата родамина С [1293, 1580, 1683] или метилового фиолетового [1006]. [c.144]

    Для определения меньших содержаний Sb проводят предварительное ее концентрирование соосаждением с GuS. При содержании Sb 1. 10-2 -1 10 % Sr = 0,10- 0,19 [101]. Ряд спектральных методов [571, 777] предложен для определения Sb в окислах хрома. По одному методу [777] Sb 1 10- Sr 0,3) выделяют соосаждением с uS, осадок растворяют в смеси НС1 с HNO3 и анализируют в виде раствора. В случае анализа хромового ангидрида r(VI) предварительно восстанавливают до Сг(И1). В хроме и его сплавах Sb определяют также экстракционно-фотометрическим методом с применением метилового фиолетового [545]. [c.153]

    При анализе различных материалов самое широкое распространение получили методы определения рения, основанные на цветных реакциях с роданидом, тиомочевиной и а-фурилдиоксимоы. Основным недостатком этих методов является необходимость отделения молибдена. Следует отметить, что модификациям и усовершенствованию указанных методов посвящается большое количество публикаций. В результате найдены пути повышения избирательности методов и чувствительности. Особый интерес представляют методы определения рения в присутствии молибдена и других мешающих примесей. Так, например, определению рения с тиооксином и 6-хлор-8-меркаптохинолином не мешают 5000-и 3300-кратный избыток молибдена соответственно, а с дифенил-карбазидом — 5000-кратные (и более) количества вольфрама. Повышенная избирательность этих методов связана с экстракцией образующихся комплексов рения. Особого внимания заслуживают экстракционно-фотометрические методы определения рения по светопоглощению ионных ассоциатов Re04 с рядом красителей. Эти методы обладают высокой чувствительностью и позволяют определять рений в присутствии значительных количеств молибдена. [c.86]

    Тараян и Гайбакян [525, 529] разработан другой вариант экстракционно-фотометрического определения рения с фуксином. Образующийся ионный ассоциат перренат-иона с реагентом экстрагируют н-бутилацетатом при pH 2,5—5,0. Экстракт фотометрируют при 560 нм. Заметные количества молибдена не мешают определению рения. Метод применен к анализу Мо—Ке-сплавов и молибденитовых концентратов. [c.130]

    Сплавы молибдена и рения. Отделение рения от молибдена проводят хроматографически на анионитах ЭДЭ-10 или дауэкс-1, после чего определяют рений по цветной реакции с роданидом [51], дифенилкарбазидом [64, 68, 449] или гравиметрически после осаждения рения в виде сульфида [937]. Предложен метод анализа сплавов Re—Мо, основанный на анодном растворении сплава, экстракционном отделении рения метилэтилкетоном и фотометрическом определении рения с а-фурилдиоксимом [963]. Без отделения Mo(VI) в присутствии маскирующих агентов возможно определение рения экстракционно-фотометрическими методами по светопоглощению ионного ассоциата перренат-иона с метиловым фиолетовым [359, 586], по реакции с З-фенил-5-(фурил-2)-пиразолин-1-дитиокарбаминатом [177], по светопоглощению перрената тетрафениларсония [614], а также амперометрическим титрованием с Сг(П) [110], Ti(III) [108], Fe(II) [109], V(II) [439] и потенциометрическим методом [333]. [c.253]

    Для определения 0,012—0,26% Аи в свинцовых и оловянных припоях применяют фотометрический метод [856], а 0,1—50% Аи в золотом припое определяют рентгенофлуоресцентным методом [1092]. В покрытиях по молибдену > 0,01 мкг/мл Аи определяют каталитически, а 0,22—1,03% Аи — полярографически [535, 667] в покрытиях по вольфраму золото определяют фотометрически при помощи вариаминового синего (см. главу 6 ) [633] и и полярографически [535, 667] (0,22—l,03%Au). В кеках золото определяют экстракционно-фотометрически при помощи диантипирилпропилметана [72] (см. главу 6) и полярографически [51] (0,13—1,86% Аи). Известны методы анализа прочих продуктов известковой щебенки, хвостов флотации, штейнов [197], силикатного кирпича [939], промежуточных продуктов свинцовоцинкового производства [110] (см. главу 6) огарков, хвостов [35], сырья с высоким содержанием сурьмы и таллия [449], (см. главу 6) веркблея, штейна [1177], пробирных корточек [180], рубинового стекла [1141], эмульсий фотослоев [4], монет [895, 1532], эптаксиальных пленок [131], продуктов нефтепереработки [874], ацетилцеллюлозы [308], полиэтилена [1414]. [c.204]

    Re). Сплав растворяют в растворе серной кислоты с добавлением перекиси водорода. Основную массу W(VI) удаляют в виде вольфрамовой кислоты. Большие содержания Re(VII) в растворе определяют, гравиметрическим методом осаждением перрената нитроном. В случае небольших содержаний рения анализ проводят без удаления W(VI). В анализируемый раствор вводят тартрат натрия, создают pH 4,5. Определение реиия(УП) заканчивают экстракционно-фотометрическим методом по интенсивности окраски ионного ассоциата перрената с метиловым фиолетовым в толуольиом растворе [892]. [c.256]

    Из реагентов данного класса для экстракционно-фотометрического определения золота применяют только родамин С. Ионный ассоциат экстрагируют бензолом. Максимум светопоглощения лежит при 565 нм, е = 9,7 10 . Оптимальная кислотность водной фазы 0,75 М НС1, концентрация МН4С1 равна 1,4 М, концентрация родамина составляет 0,01 %, время экстрагирования 1 мин. Закон Бера соблюдается при концентрации О—10 мкг Аи в 10 мл бензола. После отделения золота от сопутствующих ионов соосаждением с с теллуром при действии НзЗОд или солянокислого гидразина определению 4,9 мкг Аи(1П) не мешают по 1 мг Kg, Р1, ЗЬ(1И), Н (П), Оа, В1, Мо, У, А (П1), Т1(1) по 10 Си, N1, 2п, Зп(И), РЬ, Р, 51 мг А1, 100 мг Ге(111). Метод применен для анализа силикатов, содержащих (7,2—43,5)-10 % Аи [1284], для определения (17,6—34,8)-10 % Аи в свинцовых концентратах, (3,5—63,3)- [c.150]

    Золото определяют в медных, никелевых шламах, шламах благородных металлов, селеновых и теллуровых гравиметрическим, титриметрическим, экстракционно-фотометрическим, полярографическим, химико-спектральным, атомно-абсорбционным и активационным методами. Тип шлама определяет выбор способа его растворения, устранения мешающего влияния сопутствующих ионов и метода анализа. По данным Звягинцева [202], примерный состав шлама медноэлектролитного завода (в %) Аи 0,5—2,5 Ag 8,0-53,7 Си 12,26-45,0 РЬ 1,91-8,35 В 0,1-0,7 ЗЬ 0.2-6,76 Аз 0,1—5,42 Зе 4,8—24,6 Те 0,3—3,77 Ре 0,3 ЗЮ 2,18— 8,3 N1 0,04—0,9. Методы определения золота в различных шламах приведены в табл. 35. [c.202]

    Методы, основанные на восстановлении золота до элементного состояния [232, 404], селективны, но недостаточно чувствительны. Фотометрические методы [641, 1044, 1239, 1444] чувствительны, но малоизбирательны золото нужно отделять от сопутствующих элементов. Перспективны экстракционно-фотометрические методы [72, 342, 353, 1317] как высокочувствительные и селективные, однако они не всегда применимы. Так, методу [1317] не мешают лишь 50-кратные количества меди метод [353], не уступающий по точности пробирному анализу, предполагает трехкрат- [c.206]

    Следует различать ионятия метод анализа и методика анализа . Метод анализа — это краткое определение иринцииов, положенных в основу анализа вещества, например титриметрический метод анализа или экстракционно-фотометрический метод анализа. Методика анализа — это подробное описание всех условий и операций, которые обеспечива от заданные характеристики иравильности и воспроизводимости. [c.22]

    Следует отметить, некоторую условность де 1ения методов на химические, физико-химические и физические. Существуют также другие классификации. В последние годы иолучили развитие так называемые комбинированные методы анализа, к которым можно отнести, например, химико-сиектральный, экстракционно-атомно-абсорбционный, экстракционно-фотометрический методы. Эти методы сочетают предварительную химическую подготовку пробы (разделение, концентрирование) с последующим определением содержания элементов физическими или физико-хи-мическими методами. [c.25]

    Четырехкомпонентные системы фосфид индия—арсенид галлия. Для анализа систем InP — GaAs разработаны экстракционно-фотометрические методы [68]. [c.204]


Библиография для Экстракционно-фотометрический анализ: [c.176]   
Смотреть страницы где упоминается термин Экстракционно-фотометрический анализ: [c.247]    [c.298]    [c.310]    [c.112]    [c.739]    [c.58]    [c.159]    [c.200]   
Практическое руководство (1976) -- [ c.142 ]

Практическое руководство по фотометрическим методам анлиза Издание 5 (1986) -- [ c.210 , c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Фотометрический анализ

Экстракционно-фотометрические тоды анализа

Экстракционный анализ



© 2025 chem21.info Реклама на сайте