Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны белковые бислойные

    Специфические свойства биологических мембран. Благодаря указанным особенностям биологические мембраны имеют присущие им характерные черты. Они образуют протяженные бислойные структуры малой толщины (6-10 нм), объединяющие белковые и липидные компоненты с различными свойствами. [c.302]

Рис. 2.1. Жидкостно-мозаичная модель мембраны. Согласно этой модели, транспорт веществ может происходить как через бислойные, так и через белковые участки. Свойства этих двух путей транспорта сильно различаются. Рис. 2.1. <a href="/info/1350589">Жидкостно-мозаичная модель мембраны</a>. Согласно <a href="/info/684317">этой модели</a>, <a href="/info/100703">транспорт веществ</a> может происходить как через бислойные, так и через белковые участки. <a href="/info/243975">Свойства этих</a> <a href="/info/1696521">двух</a> <a href="/info/1277466">путей транспорта</a> сильно различаются.

    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]

    Липидные поры в отличие от белковых ионных каналов не обладают выраженной избирательностью, что коррелирует с их сравнительно большими исходными размерами (см. табл. 2.2). Ясно, однако, что в процессе затекания липидные поры могут достигать сколь угодно малых размеров, в том числе сравнимых с размерами белковых ионных каналов, что может приводить к перераспределению ионных токов в мембране, например, при возбуждении. Известно далее, что после выключения стрессового воздействия бислойная липидная мембрана может вернуться в состояние с низкой проводимостью, что подразумевает достижение порами размера, недостаточного для прохождения гидратированных ионов. Таким образом, гидрофильные липидные поры универсальны в том отношении, что могут быть использованы клеткой для транспорта высокомолекулярных веществ, ионов и молекул воды. [c.62]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]


    Изучение физико-химических свойств мембран удобно проводить на моделях монослоев, которые получаются при нанесении липидов на поверхность воды. Повышение давления и уплотнение монослоя приводят к тому, что подвижность углеводородных цепочек уменьшается, их взаимодействие друг с другом растет, а полярные головки фиксируются на поверхности раздела фаз. В пределе происходит такое уплотнение монослоя, где плошадь поперечного сечения молекулы липида не зависит от длины углеводородной цепи. Монослой представляет собой лишь половину липидного бислоя мембраны, и более удобной моделью служат различные искусственные бислойные липидные мембраны (БЛМ). Плоские ламеллярные структуры, могут сливаться, образуя замкнутые везикулярные частицы (липосомы), в которых липидные бислои отделяют внутреннюю водную фазу от наружного раствора. В везикулярные частицы можно встраивать белковые молекулы и другие компоненты биологических мембран для изучения механизмов их функционирования в биомембранах. Плоские БЛМ используются для изучения барьерных функций, электромеханических характеристик, а также межмолекулярных взаимодействий в мембранах. Электростатические взаимодействия осуществляются между заряженными группами либо в пределах одного полуслоя (латеральные), либо между разными слоями (трансмембранные). Дисперсионные вандерваальсовы взаимодействия между поверхностями мембран обнаруживаются на расстояниях до 1000 А. Это значительно превышает расстояния, где проявляется [c.131]

    Стабильность бислойных мембран определяется вероятностью появления пор критического радиуса. Очевидно, что любой фактор, снижающий высоту энергетического барьера, будет увеличивать эту вероятность. К таким факторам следует отнести снижение краевой энергии поры у, рост поверхностного натяжения и рост мембранного потенциала. Как видно на рис. 2.14, рост пробойного напряжения до 1 В сопровождается смещением критического радиуса к значениям меньшим 0,5 нм, что близко радиусам природных ионных каналов клеточной мембраны. Отсюда следует, что электрический пробой сопровождается появлением широкого спектра липидных пор различного радиуса, включая радиусы ионоселективных белковых каналов. В настоящее время метод воздействия внешним электрическим полем является одним из основных в современной биотехнологии. Известно его применение с целью увеличения пористости мембран (электропорация), введения ДНК (электротрансфекция), освобождение клеток от крупных молекул (электропермеабилиза-ция), слияния клеток (электрослияние). [c.54]

    Хотя жидкостно-мозаичную структуру мембраны обычно представляют в виде белковых айсбергов , плавающих в липидном море, в случае сопрягающих мембран это не совсем так. Благодаря высокому содержанию белков (50% внутренней митохондриальной мембраны составляют интегральные белки, 25%—периферические и 25%—липиды) эти мембраны имеют относительно плотную упаковку. Бислойные участки составляют менее 60% мембраны. Различные сопрягающие мембраны имеют несколько разный липидный состав 10% липида внутренней мембраны митохондрий составляет кардиолипин в случае мембраны тилакоидов хлоропластов фосфолипиды составляют лишь 10% липидов, остальные — это галактолипиды (40%), сульфоли-пиды (4%) и фотосинтетические пигменты (40%). Несмотря на такие различия липидного состава, свойства бислойных участков различных мембран в отношении исходной и индуцированной ионофорами проницаемости достаточно сходны. Это позволяет использовать для их описания данные, полученные на искусственных бислойных мембранах. В то же время свойства белковых транспортных систем могут быть уникальными не только для данных органелл, но и для данной ткани. Так, например, внутренняя мембрана митохондрий из печени крысы содержит транспортные системы, которых нет в митохондриях из ее сердечной мышцы (разд. 8.3). [c.31]

    Использование желчных солей, таких, как холат и дезокси-холат, при низких температурах позволяет разрушать липид-липидные взаимодействия в мембранах и в то же время сохранять интактные белок-белковые комплексы. С помощью этих детергентов дыхательную цепь митохондрий можно разделить на четыре комплекса, названные комплексами I, II, III и IV (цитохром с-оксидаза). При этом сохраняется электронтранспортная активность каждого комплекса, а после встраивания этих комплексов в искусственные бислойные мембраны восстанавливается их протонпереносящая активность. С помощью фракционирования и реконструкции комплексов достигается ряд целей 1) снижается сложность системы по сравнению с интактными митохондриями 2) становится возможным определение минимального числа компонентов, необходимых для работы каждого участка цепи 3) в период проверки хемиосмотической теории [c.115]


Смотреть страницы где упоминается термин Мембраны белковые бислойные: [c.272]   
Микробиология Издание 4 (2003) -- [ c.48 ]




ПОИСК







© 2025 chem21.info Реклама на сайте