Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белковые свойства

    Изучая действие формальдегида на животные ткани (с некоторого времени формалин применяется для фиксирования анатомических препаратов), Блюм столкнулся с вопросом о взаимодействии формальдегида с растворенными белками. Он установил, что носле прибавления формальдегида яичный белок теряет способность коагулировать при нагревании, сохраняя остальные белковые свойства. Эту новую модификацию белка он приготовляет, обрабатывая формальдегидом яичный белок, предварительно разбавленный водой и отфильтрованный для отделения глобулина. [c.175]


    Влияние присутствия углеводных компонентов на свойства белковой молекулы зависит от их содержания, которое варьирует в широких пределах от <1% до >80%. Присоединение к пептидной цепи среднего размера одной или двух небольших олигосахаридных цепей, почти никак не сказывается на типично белковых свойствах соединений. В то же время гликопротеины с высоким содержанием сахаров фактически ведут себя как полисахариды. Большинство гликопротеинов, однако, характеризуется содержанием углеводов, средним между этими двумя экстремальными случаями. Любой белок может быть заподозрен в своей принадлежности к гликопротеинам, особенно в случае аномального поведения при гель-фильтрации, ультра-центрифугировании, окрашивании, измерении ультрафиолетового поглощения и т. д. [c.317]

    Однако, зная только порядок расположения аминокислот, нельзя еще представить себе совершенно отчетливо все уровни организации белковой молекулы. Даже прн осторожном нагревании белки нередко необратимо утрачивают свойства, присущие им в природном состоянии, иными словами, происходит денатурация белков. Причем обычно денатурация не сопровождается расщеплением полипептидной цепи чтобы расщепить цепь, нужны более жесткие условия. Следовательно, цепи образуют какую-то определенную структуру под действием слабых вторичных связей . В образовании таких вторичных связей обычно участвует атом водорода, находящийся между атомами азота и кислорода. Такая водородная связь в двадцать раз слабее обычной валентной связи. [c.130]

    Гибкость волос обусловлена тем, что белковые цепи в кутикуле отделены друг от друга и несколько смещены относительно друг друга. Эта гибкость позволяет менять стиль прически, но и может также привести к разрушению волос. Вы исследуете свойства ваших волос в следующей лабораторной работе. [c.474]

    Главное различие между цепями белка и полиэтилена или полиэтилен-терефталата (дакрона) заключается в том, что в молекуле белка не все боковые группы одинаковы. У фибриллярных белков определенная повторяющаяся последовательность боковых групп придает конкретному белку-кератину или коллагену-вполне конкретные механические свойства. Глобулярные белки имеют еще более сложное строение. Эти молекулы обычно содержат от 100 до 500 аминокисло г, полимеризованных в одну длинную цепь, и полная последовательность аминокислотных остатков в каждой молекуле одного глобулярного белка одинакова. Эти остатки могут быть углеводородными, кислыми, основными, нейтральными или полярными. Свертывание белковой цепи в компактную глобулярную моле- [c.313]


    Высокомолекулярное соединение — важнейшая составная часть, скрепляющая все компоненты в одно монолитное целое и придающая смеси (композиции) пластичность, способность формоваться, а также электроизоляционные, антикоррозионные и другие важнейшие свойства. Для этого используются кроме синтетических полимеров эфиры целлюлозы, белковые вещества, асфальты и пеки. По составу пластмассы можно разделить на нена-полненные, представляющие собой чистые или с очень незначительными добавками полимеры, и наполненные пластики — смеси, содержащие наполнители, пластификаторы, красители, стабилизаторы, отвердители и другие добавки, равномерно распределенные в связующем — смоле. [c.213]

    Все растительные и животные организмы содержат белковые вещества. Это сложные высокомолекулярные соединения, которые обладают коллоидными свойствами. Независимо от разнообразного строения и различных размеров молекул отдельные белковые вещества имеют очень близкий элементный состав. Некоторые белки содержат фосфор, железо, иод и т. д. [c.25]

    Исследуемая в данной работе желатина представляет собой продукт нер ,)аботки коллагена — распространенного в природе белкового вещества. В молекулах желатины содержатся как кислотные (карбоксильные), так и основные (амино) группы. Поэтому в водных растворах желатина проявляет свойства, присущие амфотерным полиэлектролитам, т. е. происходит ионизация кислотных и основных групп  [c.151]

    Под действием различных ферментов или энзимов с исключительной избирательностью в животных и растительных организмах проходят многочисленные реакции. Ферменты являются органическими катализаторами белковой природы и обладают свойствами, переходными между гомогенными и гетерогенными катализаторами, приближаясь, однако, к свойствам гетерогенных. По этой причине в настоящее время ферментативные реакции называют микро-гетерогенными. [c.22]

    Пептидная связь играет особую роль в полипептидах и белковых веществах. На свойстве многоосновных кислот реагировать с диаминами и образовывать высокомолекулярные цепные полимеры с пептидными связями основано получение полиамидной смолы найлона, успешно конкурирующего с натуральным и искусственным шелком. [c.502]

    Искусственные шелка обладают большим блеском и гибкостью, т. е. теми свойствами, которые характерны для натурального шелка. Однако в химическом отношении они не имеют ничего общего с настоящим щелком, который является белковым веществом. От него они невыгодно отличаются недостаточной прочностью, изнашиваемостью и большей чувствительностью к влажному воздуху и воде. [c.465]

    Некоторые энзимы построены только нз аминокислот и, следовательно, представляют собой простые белки. Другие энзимы наряду с высокомолекулярной белковой компонентой содержат также низкомолекулярную активную группу . В этих случаях ферментативное действие оказывает только соединение в целом ни активная группа, ни белковая компонента в отдельности ферментативными свойства.ми не обладают. Низкомолекулярную компоненту ферментов, которую Виль- [c.908]

    Третичная структура белковой молекулы образуется при свертывании поли-пептидной цепи в компактную трехмерную систему (в случае ферментов это, как правило, сферическая глобула). При рассмотрении сил, определяющих свертывание полипептидной цепи (цепей), прежде всего укажем на следующее фундаментальное свойство белков полипептидные цепи стремятся свернуться так, чтобы во внут- [c.11]

    Гидратация белка также находится в определенной зависимости от pH раствора она наименьшая в изоточке. Вполне понятно, что с изменением формы белковых молекул и степени их гидратации связано изменение целого ряда свойств белков и их растворов. Так, например, вязкость растворов имеет минимум в изоточке, поскольку свернутые в плотные клубки молекулы оказывают меньшее сопротивление потоку жидкости, чем длинные цепеобразные молекулы. [c.192]

    Строение ферментов. По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса однокомпонентные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров. [c.168]

    Электрический заряд белков, помимо их своеобразного строения, является особенностью их свойств. В белковой молекуле содержатся две полярные группы основная — ЫНг и кислотная — СООН, которые и сообщают макромолекуле амфотерные свойства. Белки не просто электролиты, а электролиты — амфолиты. Это означает, что в водных растворах макромолекулы способны диссоциировать как кислоты, т. е. с отщеплением ионов водорода [c.339]


    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]

    Как влияет pH раствора на свойства белковых систем  [c.222]

    Все ферменты представляют собой белковые комплексы. Они обладают свойствами гидрофильных коллоидов, с высокой поверхностной энергией, поэтому они чувствительны к действию различных факторов внешней среды. Активность ферментов снижается при резких изменениях температуры и pH среды, повышении осмотического давления, избыточной концентрации субстрата, накапливании продуктов обмена, действии бактерицидных лучей, повышении концентрации самих ферментов и т. д. Наибольшую активность оии проявляют при 25—35° С. Большинство ферментов разрушается при 55—60° С. [c.257]

    ДЕНАТУРАЦИЯ БЕЛКОВ — потеря белковыми веществами их природных свойств (растворимости, гидрофильно-сти и др.) в результате нарушения структуры их молекул. Д. б. вызывается повышением температуры, действием сильных щелочей, солей тяжелых металлов и др. [c.85]

    Гетеролитические реакции более распространены в органической химии. Они протекают обычно в присутствии полярного растворителя, главный же растворитель на нашей планете — вода, обладающая ярко выраженными полярными свойствами. Природа, как правило, не знает неполярных растворителей, гидрофобные условия создаются лишь в живых системах, в складках клеточных липоидных мембран или внутри белковых глобул, выстланных лио-фильными остатками. Что касается лаборатории, то хими -органик пользуется, как правило, гидрофобными растворителями и значительно реже приме.няет водную среду, чем природа. [c.157]

    Степень ионизации каждой группы зависит от pH среды. Поскольку белковые макромолекулы содержат и кислотные, и основные группы, они определяют свойства амфотер-ных соединений, образуя макроионы, заряженные, как указывалось ранее, положительно в кислой среде и отрицательно — в щелочной. Заряд достигает 2 атомных единиц на каждую тысячу единиц молекулярной массы в зависимости от концентрации водородных ионов в растворе. [c.214]

    Белковые смеси анализируют электрофорезом на бумаге. Хроматографическую бумагу пропитывают буферным раствором, поддерживая тем самым необходимое значение pH. Наносят анализируемую смесь и создают электрическое напряжение. По истечении определенного времени (оно зависит от свойств разделяемых белков, носителя и приложенной разности потенциалов) проявляют электрофореграммы химическими и биохимическими методами. [c.216]

    Растворы некоторых высокомолекулярных соединений, особенно природного происхождения, при растворении даже в небольших концентрациях образуют систему, текучесть которых очень низка. В таких системах возможна упругая деформация, и заметная скорость течения обнаруживается лишь при определенном напряжении сдвига. Такие системы называют студнями . По своим механическим свойствам они подобны гелям — структурированным дисперсным системам. Образование студней наблюдается при охлаждении растворов белковых веществ, например желатина. Причины образования студней белковых веществ окончательно не выяснены. Предполагается, что структурирование их растворов происходит в результате взаимодействия гидрофобных частей макромолекул и образования связей между разноименно заряженными группами. [c.224]

    Модификация боковых цепей расширяет спектр белковых свойств. Поскольку модификация боковой цепи наделяет белок уникальными свойствами, поэтому поводу можно сделать несколько лишь самых общих замечаний. В большинстве случаев модифицируется только одна или ограниченное число боковых цепей белка. Эта специфичность определяется структурой белка и модифицирующего фермента, а также природой боковой цепи. Примеры модификаций боковых цепей и некоторые функциональные аспекты даны в табл. 4.3. Стреер [85J составил рисунки, иллюстрирующие химизм ЭТИХ реакций. [c.80]

    Известный немецкий ученый Феликс Юст в 1952 г. установил возможность выращиванйя дрожжей на н-алканах. Это открыло широкую дорогу для массового получения дешевого белка, очень близкого по своим свойствам в животному белку - протеину. Использование всего лишь 2i мировой добычи нефти для получения белково-витамш-ннх концентратов (БВК) может полностью покрыть дефицит белка. [c.262]

    Аминокислоты могут реагировать с сахарами за счет их альдегидных и гидроксильных групп. В результате получаются высокомолекулярные соединения с коллоидными свойствами. Эти свойства позволяют объяснить установленный Грегори и Ветхе-рилом факт, что белковые вещества животных исчезают бесследно при разрушении тела в естественных условиях, так как превращаются в газообразные и растворимые в воде продукты. Известно, что в организме животных не содержится сахаров, которые бы могли связать аминокислоты, образованные при гидролизе белков [И, с. 62]. [c.26]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Важно уяснить, что именно основания, пуриновые или пиримидиновые, являются носителями генетической информации, подобно тому как боковые цепи аминокислот определяют химические и функциональные свойства аминокислоты. Носитель наследственной информации — молекула ДНК — организована в клетке в структурные единицы — гены. Эти последние в свою очередь локализованы в особых структурах — хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую специфический признак цвет глаз и волос, рост, пол и т. д. Однако для описания на молекулярном уровне ген — довольно сложное образование, так как число молекулярных стадий при реализации конкретного признака может быть весьма велико. Отметим, что любой генетический признак реализуется с помощью белкового синтеза (структурного белка либо фермента), и введем понятие более простого элемента — цистрона. Цистрон определяют как часть ДНК, которая несет генетическую информацию (кодирует) о синтезе лищь одной полипептидной цепи. Хромосома содержит много сотен цистронов. Все количество ДНК, содержащееся в клетке, называется геномом. [c.108]

    Ферменты обладают свойствами, позволяющими им участвовать в обоих каталитических процессах (гетерогенном и гомогенном). Они способствуют взаимному приближению реагирующих веществ на белковой поверхности либо экстрагируют их из водной фазы внутрь гидрофобной полости. Они связываются с реагентами, благодаря чему скорость химической реакции значительно увеличивается. Например, катализ гидролиза амидной связи ферментом происходит не только благодаря протеканию реакции на белковой поверхности, но и вследствие того, что фермент химически взаимодействует с субстратом, образуя более лабильный эфир, который затем и подвергается гидролизу (см. ниже). [c.192]

    В обоих белках (гемоглобине и миоглобине) гем прочно связан с белковой частью (глобином) с помощью 80 гидрофобных взаимодействий и одной координационной связью между имидазольным кольцом так называемого проксимального гистидина и атомом железа. Несмотря на многочисленные различия в их аминокислотных последовательностях, миоглобин и гемоглобино-вые субъединицы имеют сходную третичную структуру, включающую восемь спиральных участков. Гем вклинивается в щель между двумя спиральными участками кислород связывается по одну сторону порфирина, в то время как гистидиновый остаток координируется по другую. По-видимому, уникальное свойство гемоглобина связывать кислород зависит от структурных особенностей всей молекулы гемоглобина или миоглобина. [c.360]

    Для рещения экологических проблем предложено использовать бактерии, ранее селекционированные для получения кормового белково-витаминного концентрата (БВК) [4]. Сами БВК, содержащие, наряду с углеводородокисляющими микроорганизмами, в значительном количестве биогенные элементы, оказывают благоприятное действие на биологические свойства почвы, нормализуют ее микробиологические и биохимические параметры, снижают остаточное содержание нефтепродуктов и токсичность почвы для растений, т.е. могут использоваться для восстановления плодородия [45]. В частности, БВК паприн — продукт крупнотоннажного биотехнологического производства — представляет собой биомассу дрожжей, выращенных на -алканах основную его часть составляют белки, липиды, полисахариды, нуклеиновые кислоты. К информации такого рода, безусловно, следует относиться с большой долей осторожности. [c.390]

    Химические консерванты продуктов питания, синтетические белковые препарат1>1, химические добавки для придания вкусовых и других свойств, пленочные материалы для упаковки пищевых продуктов [c.21]

    В природе давно были найдены такие аминокислоты, которые отсутствуют в белковых гидролизатах нли содержатся /з них лишь в очень малых количествах. Енде Кендалл выделил из гормона щитовидной железы близкую тирозину и динодтирозину иодированную аминокислоту тироксин (3, 5, 3, 5 -тетраиодтиронин). Свойство тироксина стимулировать обмен веществ в еще большей С1епени выражено у 3.5,3 -трииодтиронина. Эти соединения успешно изучались Харрингтоном и его школой  [c.373]

    Термопластики, образующие волокна, находятся при обыкновенной температуре, так сказать, в полупластическом состоянии. Этим объясняются те характерные для текстильных волокон свойства, благодаря которым они образуют единственную в своем роде группу твердых тел. Свойства отдельных волокон варьируют соответственно равновесию, которое существует между их кристал- лической и пластической (аморфной) зонами. Ранее уже было-сказано о том, как это влияет на равновесную влагу в волокнах, а также о том, какое действие производит эта равновесная влага на жесткость волокон путем разрушения некоторых связей между цепями соседних молекул. Выше было также упомянуто, что у целлюлозных и белковых волокон указанные связи между цепями, которые могут быть обратимо разрушены водой, представляют собой преимущественно водородные связи. Последние не являются связями, обладающими высокой энергией присущая им энергия равна примерно 4500 калориям/М (см, ссылку 198). Для сравнения можно привести энергию ковалентной связи, существующей между кислородом и водородом, которая составляет 110 000 калорий/М. Влияние водородных связей на жесткость и частичную кристалличность волокон основано на возможности образования большого количества именно таких связей между соседними молекулами. Отсюда явствует, что количество тепловой энергии, требуемой для разрушения этих связей, должно быть значительным, но ее интен- [c.222]

    Ферменты обладают свойствами, необычными для других катализаторов. Прежде всего, они характеризуются весьма специфической чувствительностью к температуре. Экспериментальные исследования показали, что любой конкретный фермент проявляет максимальную активность при температурах, близких к нормальной температуре организма, в котором находится данный фермент. На рис. 25.6 показан типичный график зависимости активности фермента от температуры. Нередко случается наблюдать, что при повышении температуры выше обычной температуры действия фермента его активность временно возрастает, но затем снижается. Вторичная и третичная структуры белковой молекулы фермента, от которых зависит активность активного центра, поддерживаются множеством слабых сил, удерживаюших белковую цепь в определенной конфигурации. Нагревание приводит к разрушению прежней структуры белковой цепи фермент денатурируется и полностью теряет свою активность. [c.451]

    СУЛЬФИТНЫЙ ЩЕЛОК — раствор, образующийся при обработке целлюлозы гидросульфитом кальция Са (Н30з)2. Растворенные в С. щ. вещества — это в основном углеводы и соли лигносульфоновых кислот. Из С. щ. биохимической переработкой получают этиловый спирт, белковые дрожжи, антибиотики, органические кислоты, растворители, многоатомные спирты химической переработкой — ванилин, фенолы, ароматические кислоты. Упаренный после биохимической переработки С. щ., т. наз. сульфитно-спиртовую барду, применяют в качестве клеящего, пластифицирующего, диспергирующего и дубящего средств. При переработке 1 т целлюлозы образуется 8—9 м С. щ., из которого можно получить 100—110 кг белковых кормовых дрожжей или 80—100 л этилового спирта и 35—40 кг дрожжей, а также 1—1,2 т концентрата сульфитно-спирто-вой барды. При хлорировании обессахаренного С. щ. образуется препарат, обладающий сильными антисептическими, дезинсектирующими и гербицидными свойствами. [c.241]

    В конце 30-х годов в области электрофореза наметилось новое направление, сыгравшее большую роль в изучении физикохимических свойств некоторых коллоидных систем и очень быстро развивающееся в настоящее время. Это направление связано с усовершенствованиями макроскопического метода электрофореза, сделанными Тизелиусом, Мак-Иннесом, Лонгсвордом и другими исследователями для применения электрофореза к анализу сложных белковых систем. Усовершенствования включали четыре основных момента 1) получение четкой границы между золем и боковой жидкостью, 2) подавление теплового эффекта в опыте, 3) выделение отдельных фракций белков в чистом виде, 4) применение метода Фуко—Тендера для определения границы движущихся в электрическом поле отдельных фракций белка по показателю преломления света. [c.132]

    Изучение мембранных явлений на живых организмах — чрезвычайно сложная экспериментальная задача. В 1962 г. П. Мюллер и сотрудники разработали методику приготовления бимолекулярных фое-фолипидных мембран, что предоставило возможность модельного исследования ионного транспорта через мембраны. Для приготовления искусственной мембраны каплю экстракта мозговых липидов в углеводородах наносят на отверстие в тефлоновом стаканчике (рис. 46, а). Искусственные мембраны имеют более простое строение, чем естественные (ср. рис. 45 и 46, б), но приближаются к последним по таким параметрам, как толщина, электрическая емкость, межфазное натяжение, проницаемость для воды и некоторых органических веществ. Однако электрическое сопротивление искусственных мембран на 4—5 порядков выше. Проводимость мембран увеличивают, добавляя ионофоры жирорастворимые кислоты (2,4-динитрофенол, дикумарол, пентахлорфе-нол и др.) или полипептиды (валиномицин, грамицидины А, В и С, ала-метицин и др.). Мембрана, модифицированная валиномицином, имеет сопротивление порядка 10 Ом/см , а ее проницаемость по К-" в 400 раз выше, чем по Ма+. На модифицированных моделях был изучен механизм селективной проницаемости мембран. В определенных условиях при добавлении белковых компонентов искусственная мембрана позволяет моделировать также свойство возбудимости. [c.140]

    Динамическая структура белковых макромолекул ферментов, постулированная Ламри, Линдерштром-Лангом и Кошландом, которая проявляется в локальной тепловой подвижности отдельных участков и в способности к индуцированным конформационным переходам, играет первостепенную роль в реализации таких функционально важных свойств ферментов, как динамическая адаптация формы фермента к структуре каталитических и субстратных групп, меняющаяся в процессе химической реакции, аллостерическое взаимодействие между пространственно разобщенными центрами, реализация принципа компле-ментарности свободных энергий (по Ламри) и индуцированного соответствия (по Кошланду). [c.242]


Смотреть страницы где упоминается термин Белковые свойства: [c.211]    [c.379]    [c.541]    [c.103]    [c.63]    [c.423]    [c.44]    [c.197]    [c.455]   
Органическая химия Издание 3 (1963) -- [ c.336 ]

Органическая химия (1956) -- [ c.338 , c.343 ]




ПОИСК





Смотрите так же термины и статьи:

Белковые вещества свойства

Белковые химические свойства



© 2025 chem21.info Реклама на сайте