Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт малых молекул через мембрану

    Несмотря на то что каждому типу мембран присущи определенные липидные и белковые компоненты, основные структурные и функциональные особенности, обсуждаемые в этой главе, характерны как для внутриклеточных, так и для плазматических мембран. Прежде всего нам хотелось бы рассмотреть структуру и организацию главных компонентов всех биологических мембран - липидов, белков и углеводов. Затем мы обсудим механизмы, используемые клетками для транспорта малых молекул через плазматическую мембрану, а также способы поглощения и выделения клетками макромолекул и крупных частиц. В последующих главах будут проанализированы некоторые дополнительные функции плазматической мембраны роль в клеточной адгезии (гл. 14) и в сигнальных функциях (гл. 12). [c.349]


    Поскольку большая часть присутствующей в клетке воды находится в вакуоли, мы начнем анализ проблемы транспорта воды с рассмотрения того пути, который молекуле воды требуется преодолеть для того, чтобы попасть в вакуоль клетки. Вода должна пройти сквозь две мембраны (плазмалемму и тонопласт) и через лежащую между ними цитоплазму. Мы мало знаем о различиях в способности этих трех структур пропускать воду, а потому обычно все три структуры рассматриваются совместно как единый мембранный барьер. [c.170]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]


    Поскольку внутренняя часть липидного бислоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Благодаря такому барьеру предотвращается утечка водорастворимого содержимого клеток. Однако из-за наличия подобного барьера клетки оказались вынужденными создать специальные пути для переноса водорастворимых молекул через свои мембраны. Клетки должны получать необходимые питательные вещества и выделять вредные продукты метаболизма. Кроме того, клеткам надо регулировать внутриклеточные концентрации ионов, что подразумевает возможность транспорта определенных ионов в клетку или из клетки. Перенос малых водорастворимых молекул через липидный бислой осуществляется с помощью особых трансмембранных белков, каждый из которых отвечает за транспортировку определенной молекулы или фуппы родственных молекул. В клетках существуют также способы пфеноса через плазматические мембраны макромолекул, таких, как белки, и даже крупных частиц. Однако соответствующие механизмы сильно отличаются от механизмов транспорта малых молекул и потому будут обсуждаться в другом разделе (см. разд. 6.5). [c.379]

    Устройство мембраны, показанное на рис. 10.2, таково, что белки как бы плавают в липидном море . Их молекулы погружены с двух сторон мембраны на разную глубину в двойной слой подвижных углеводородных хвостов липидов. Имеются белки, проходящие через всю мембрану. Значительная часть поверхности мембраны свободна от белков так, белки занимают 70 7о поверхности мембраны эритроцита и 80 7о поверхности мембраны мпкросомы. Транспорт малых ионов и молекул происходит по каналам в мембранах. В устройстве и функционировании каналов особенно существенна роль белков. Природа каналов— важная проблема физики мембран (см. 11.4). [c.338]

    Перспективы развития мембранной технологии в большой мере связаны с надеждалП на воспромзведеннс и практическое использование свойств биологических мембран, важнейшим из которых является способность осуществлять селективный обмен молекулами различных веществ. Уже сейчас промышленность располагает значительным набором мембран с селективными свойствами. Однако разработка и использование селективных мембранных материалов сталкивается до сих пор со значительными трудностями. Это связано главным образом с тем, что механизмы проницаемости как биологических, так и многих искусственных мембран окончательно не выяснены и не существует общего подхода к их описанию. Создание универсальной математической модели, адекватно описывающей мембранный транспорт, осложняется разнообразием процессов переноса через мембраны. В биологических мембранах выделяется пассивный транспорт (обычная диффузия), активный транспорт (перенос вещества против градиента концентрации) и облегченная диффузия (перенос вещества по градиенту концентрации с аномально высокой скоростью). В формировании реального процесса переноса могут принимать участие все механизмы в различных соотношениях. Одной из характерных особенностей многих селективных мембран является аномальная зависимость потока переноса от градиента концентрации [30—32]. В силу специфических свойств мембран, больших трансмембранных градиентов и активного взаимодействия потока переноса со структурой мембраны наблюдаются значительные отклонения от закона Фика. При этом линейная зависимость потока переноса от градиента концентрации оказывается справедливой только для малых трансмембранных градиентов. Наблюдается замедление роста потока переноса или даже насыщение при больших значениях трансмембранного градиента. [c.123]

    Функции липидной части мембраны. Липиды, входящие в состав мембран, служат растворителем для их интегральных белков, барьером проницаемости для полярных молекул. Гидрофобные жирорастворимые вещества легко проходят через липидный бислой. Малые молекулы газов — кислород, двуокись углерода и азот легко диффундируют через гидрофобную область мембраны. Липиды мембраны обеспечивают ее жидкостность или текучесть. Жесткость определяется степенью насыщенности жирных кислот в фосфолипидах и наличием холестерина. Текучесть мембраны тем ниже, чем выше насыщенность жирных кислот и чем больше содержание холестерина. От нее зависят такие функции мембраны, как транспорт веществ через мембрану, взаимодействие рецепторов с лигандами. Основой старения и атеросклероза является понижение жидкостности мембран. [c.101]


    Простая диффузия осуществляется за счет теплового движения частиц в направлении градиента их концентраций, и ее скорость зависит от величины этого градиента, коэффициента диффузии, температуры, значения коэффициента распределения. Такой перенос веществ осуществляется через поры мембран в белоксодержащих участках, которые проницаемы для малых молекул (Н2О, мочевина, СО2, О2), или через липидный слой мембраны, служащий растворителем для гидрофобных веществ (простые и сложные эфиры, высшие спирты, жирные кислоты и др.). Перенос вещества с помощью простой диффузии прекращается, когда градиент концентрации становится равным нулю. Однако большинство веществ проникает через биомембраны с помощью специфических транспортных систем. Простейшим процессом такого вида транспорта является облегченная диффузия. [c.444]

    Слои эпителиальных клеток покрывают поверхность тела и выстилают все его полости. Несмотря на значительные биохимические различия, у этих слоев есть по крайней мере одна общая функция они служат высокоселективными барьерами, разделяющими очень различные по химическому составу внутренние и наружные жидкости. Ведущую роль в поддержании функции эпителиев как селективных барьеров играют плотные контакты. Например, эпителиальные клетки, выстилающие тонкий кишечник, должны удерживать большую часть его содержимого в просвете кишки и в то же время должны перекачивать оттуда во внеклеточную тканевую жидкость определенные питательные вещества, которые затем всасываются в кровь. Такой перенос осуществляют две группы специализированных транспортных белков одна из них находится на апикальной поверхности эпителиальных клеток (эта поверхность обращена к просвету кишечника) и транспортирует в клетку избранные молекулы, а другая-на базальной и латеральной (или, как говорят, базолате-ральной) поверхности и вновь откачивает эти молекулы из клетки с другой стороны (рис. 12-24). Очевидно, что для поддержания направленного транспорта апикальные насосы не должны диффундировать (в плазматической мембране) на базолатеральную поверхность и наоборот. Кроме того, необходимо предотвратить обратную утечку транспортируемых молекул в полость кишечника. Плотные контакты обеспечивают оба этих условия. Во-первых, они служат препятствием для диффузии молекул в липидном бислое плазматической мембраны. Во-вторых, они так герметично соединяют соседние клетки, что через образующийся непрерывный клеточный слой не проникают даже малые молекулы. [c.213]

    Удаление малых органических молекул. Эту операцию можно проводить с помошью мембран для обратного осмоса или в некото-рь х случаях с юмощью мембрая для ультрафильтрации. В любом случае основной тип транспорта через мембрану ускоряется переносом или просто диффузией. [c.278]

    Возникновение АрН на мембране может служить основой для вторичного активного транспорта и органических веществ. В плазмалемме обнаружены белки-переносчики сахаров, аминокислот, которые приобретают высокое сродство к субстрату только в условиях протонирования. Поэтому когда Н+-насос начинает работать и на наружной поверхности плазмалеммы увеличивается концентрация ионов Н+, то эти белки-перено-счики протонируются и связывают сахара (аминокислоты). При переносе молекул сахара на внутреннюю сторону мембраны, где ионов Н+ очень мало, Н+ и сахара освобождаются, причем сахара поступают в цитоплазму, а ионы Н+ снова выкачиваются из клетки Н+-насосом, По существу, Н+ играет в этом процессе роль катализатора. Точно так же в симпорте с ионами Н+ в клетку могут поступать и анионы. Кроме того, анионы слабых органических кислот при понижении pH на поверхности плазмалеммы могут проникать через мембрану в виде незаряженных молекул (если они растворимы в липидной фазе), так как с повышением кислотности снижается их диссоциация. [c.263]


Смотреть страницы где упоминается термин Транспорт малых молекул через мембрану: [c.379]    [c.481]    [c.220]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.57 , c.58 , c.59 , c.60 , c.61 , c.62 , c.63 ]




ПОИСК







© 2025 chem21.info Реклама на сайте