Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ткани животных определение

    Биологическое значение осмотического давления. Осмос имеет большое значение для растительных и животных организмов, способствуя достаточному оводнению клеток и межклеточных структур. Возникающее при этом осмотическое давление обусловливает тургор клеток, т. е. их своеобразную упругость, способствуя тем самым поддержанию эластичности тканей, сохранению определенной формы органами и т. п. Обилие воды в клетках и тканях необходимо для нормального течения многообразных физических и химических процессов гидратации и диссоциации веществ, реакций гидролиза, окисления и т. п. [c.25]


    Изотоп углерода С образуется с постоянной скоростью в верхних слоях атмосферы. Возникает он из атомов азота в результате действия на них космических лучей превращение азота в углерод-14 происходит по реакции, приведенной в предшествующем разделе. Радиоактивный углерод окисляется до двуокиси углерода, которая благодаря непрерывным перемещениям воздушных масс полностью смешивается е атмосфере с нерадиоактивной двуокисью углерода. Равновесная концентрация углерода-14, образующегося в атмосфере под действием космических лучей, равна примерно ЫО , а это значит, что один атом радиоактивного углерода приходится на 10 атомов обычного углерода. Двуокись углерода, как радиоактивная, так и нерадиоактивная, поглощается растениями, фиксирующими углерод в своих тканях. Животные, питающиеся растительной пищей, также накапливают в своих тканях углерод, содержащий 1-10 частей радиоактивного изотопа. После гибели растения или животного радиоактивность углерода в его тканях, определяемая количеством находящегося в них радиоактивного углерода, соответствует доле радиоактивного углерода, содержащегося в атмосфере в условиях равновесия. Однако через 5760 лет (период полураспада углерода-14) половина содержащегося в них изотопа подвергнется распаду и радиоактивность данного материа-ла-уменьшится наполовину. Через 11520 лет останется только четвертая часть первоначальной радиоактивности и т.д. Следовательно, путем определения радиоактивности образца углеродсодержащего материала (древесины, мяса, древесного угля, кожи, рога или других ископаемых остатков растительного или животного происхождения) можно определить число лет, прошедших с того времени, когда присутствующий в данном образце углерод первоначально был поглощен из атмосферы. , - [c.617]

    Г. обнаружены в вирусах и фагах, микроорганизмах, грибах, растениях, в клетках и тканях животных. Их главная ф-ция-участие в катаболизме сложных углеводов они играют также важную роль в их биосинтезе (напр., крахмала, углеводных цепей гликопротеинов). Липидозы и др. болезни накопления обусловлены наследств, недостатком определенных Г. [c.576]

    Р. Бойль систематически использовал экстракты растений (лакмус, фиалка и др.) и животных тканей для определения кислотности и щелочности растворов например, он установил, что в щелочном растворе экстракт фиалки становится зеленым. Известное с древних времен свойство экстракта дубильных орешков окрашиваться в присутствии железа и меди было дополнено наблюдением, что интенсивность возникающей при этом окраски связана с содержанием металла в растворе. Известно, что Бойль судил о составе осадков по форме образующихся кристаллов он проводил фракционную кристаллизацию. Бойль отделил химию от медицины, это был конец эпохи иатрохимии. [c.15]


    Мы исходили из того, что мембраны обонятельной слизистой носа отчетливо окрашены в желтый или коричневый цвет веществом, называемым обонятельным пигментом. Состав и строение этого вещества не известны, но, по сведениям ряда авторов, оно присутствует в большом количестве в соответствующих тканях животных, у которых хорошо развито обоняние. Мы почувствовали, что присутствие в обонятельных клетках окрашенного вещества может иметь большое значение совсем не потому, что восприятие запаха каким-то образом связано с восприятием цвета, но вследствие того, что цвет окрашенных веществ зависит от определенных особенностей их структуры, а эта структура может иметь непосредственное отношение к нашей проблеме. [c.201]

    Области применения метода РАА весьма широки. Это, во-первых, анализ высокочистых веществ, используемых в полупроводниковой технике. Кроме того, это определение содержания микроэлементов в крови, в плазме, в тканях животных и растений, что обусловило использование метода в судебной медицине. Значительное при- [c.165]

    Цвет большинства объектов обусловлен входящими в них веществами, которые поглощают энергию излучения в определенных участках видимого спектра. Такие красящие вещества называют, если они нерастворимы — пигментами (красками), если растворимы — красителями. Свойство окрашивающего вещества, вследствие которого он поглощает большую или меньшую части энергии именно в данном участке видимого спектра, а не в другом, обусловлено его химическим строением. Раньше пигменты и краски добывались экстракцией из тканей животного характера (перьев определенных пород кур, некоторых моллюсков) или из растений (индиго, марена), теперь прогресс органической химии дал возможность получать эти и многие другие окрашивающие вещества синтетическим путем. Химические теории цвета получаемых соединений пытаются найти связь между избирательным поглощением падающей на них световой энергии и их химическим строением. Эти теории крайне неполны, но тем не менее имеют огромное значение в поисках и разработке химиками все более полезных окрашивающих веществ. [c.44]

    Для изолирования ДДТ из внутренних органов трупа и выделений человека рекомендован эфир как вещество, хорощо растворяющее ДДТ и не растворяющее неорганические галоидные соединения, всегда присутствующие в объектах судебно-химического исследования. Хроматография на бумаге и в тонком слое рекомендуется для очистки извлечений, обнаружения и количественного определения ДДТ. Все более широкое применение при анализах мочи, тканей животных и других объектов на ДДТ и его метаболиты приобретает газовая хроматография. Для экстракции при исследовании пищевых продуктов применяют бензол, четыреххлористый углерод, горячий спирт. Продукт экстрагирования отфильтровывают, органический растворитель удаляют выпариванием, а остаток подвергают качественному и количественному анализу. [c.252]

    Для определения урана в почвах, илах, растениях и тканях животных применяют экстракционно-люминесцентный метод с помощью прибора ЛЮФ-57. Погреш- [c.287]

    Большинство пищевых продуктов содержит 0,2—0,3% фтор-иона, исключение составляет чай и морские продукты [19]. Установлено [20—22], что нормальное содержание фтора в крови — 0,3 мг л, содержание его в органах животных различно. Имеются материалы богатые фтором (зубная эмаль, кости, эпидермис, волосы, зобная железа, кровь, мозг) и бедные фтором (хрящи, сухожилия, мускулы). Определяли фтор-ион в жидкостях и тканях животного, в крови и кровяной сыворотке, в молочных продуктах, удобрениях и фосфатсодержащих веществах [23—29]. Изучалось содержание фтора в растениях, описаны способы определения фтора в инсектицидах, жидкостях для опрыскивания, в древесине [30—37]. [c.172]

    В то же время вирусы животных — вирусы, которые растут на тканях животных,— имеют, как это можно видеть в электронном микроскопе, вполне определенную структуру. Эти вирусы, как правило, крупнее, чем вирусы растений, их молекулярный вес порядка 1 ООО ООО ООО. Вирус коровьей оспы (используемый при прививке оспы) имеет, как показано при помощи электронного микроскопа, форму прямоугольного параллелепипеда, внутри которого находятся круглые частицы вещества, поглощающего пучок электронов сильнее, чем остальное вещество. [c.479]

    Вопросу применения химических методов для анализа пищевых продуктов посвящено сравнительно мало публикаций, хотя в настоящее время многие лаборатории пищевой промышленности используют атомно-абсорбционный метод. Это объясняется, вероятно, тем, что основные методики анализа являются общепринятыми и мало отличаются от прикладных работ в смежных областях. Так, например, определение кальция, магния и других металлов в тканях животных рассматривается в разделе Биохимия и медицина (глава V). Аналогичные методы используются различными пищевыми лабораториями для анализа этих металлов в мясных и рыбных продуктах. Приготовление образцов и анализ растительных материалов довольно подробно описано в разделе Сельское хозяйство (глава V). Ниже приведен перечень опубликованных работ по применению атомно-абсорбционного метода для анализа различных пищевых продуктов  [c.169]


    Методы определения. В овощах, фруктах тканях животных и человека. Разработаны методы определения Г. по общему хлору ТСХ, ГЖХ [21 ]. В биологических средах. Колориметрический метод (Лебедева и др. [7]). [c.568]

    Природные жиры и даже отдельные их представители в большей или меньшей мере различаются химическим составом входящих в них глицеридов и сопутствующих веществ. Степень различия зависит от особенностей сырья, из которого они получены, и от некоторых других причин. Большое влияние на состав жиров оказывают условия развития и жизни животного организма и растения. Влияет на него и способ извлечения жира из сырья и качество последнего. У животных состав жиров в жировой ткани качественно может быть непостоянным. Часть его синтезируется в результате превращения углеводов пищи, а с другой стороны, в тканях животных может откладываться жир, находящийся в пище. В качестве примера можно указать на то обстоятельство, что если в рацион свиней включить на длительное время подсолнечные жмыхи, то в жире их резко увеличивается содержание линолевой кислоты. Таким образом, состав каждого жира по многим причинам может иметь колебания в определенных пределах, что отражается на его качественных показателях. Однако колебания эти происходят в нешироких, характерных для отдельных жиров пределах. Механизм образования и динамика накопления глицеридов жирных кислот в семенах и плодах растений доста- [c.135]

    Тем не менее применение атомно-спектроскопических детекторов очень эффективно в силу их чрезвычайно высокой специфичности [11]. Поэтому этот вид детектирования успешно используют для идентификации и определения токсичных химических соединений в воздухе и воде [101, 103], почве и донных отложениях [7], в тканях животных и растений [7, 101], а также в пищевых продуктах [7, 100, 102]. [c.444]

    Определение общего содержания микроэлемента в образцах тканей животных обычно требует разрушения органической основы сухим или мокрым озолением. Результаты работы Горзуха [41] по методике озоления при анализе микроэлементов в биологических материалах, вероятно, применимы к проблеме озоления тканей животных. Определение летучих элементов, таких, как селен или иод, требует использования для разрушения основы герметических систем, таких, как кислородная колба или бомба Парра [42]. Большие количества жира, содержащиеся в некоторых тканях животных, могут создать трудности при озолении или измельчении высушенного материала. Экстракцию н<ира из тканей эфиром можно применить в тех случаях, когда удается твердо установить, что удаление н<ира не влечет за собой потери определяемых микроэлементов. [c.76]

    Ответственные химические компании принимают на себя обязательства по уменьшению хронической опасности - опасности, возникающей из-за длительного воздействия химических веществ. Промышленные ученые — большей частью химики — ра зрабогалн чувствительные инструменты и методы для определения химического загря шеьгия окружающей среды, тканей животных и людей. [c.499]

    РАДИОАКТИВАЦИОННЫЙ АНАЛИЗ — метод анализа вещества с помощью различных ядерных реакций. При Р. а. исследуемое вещество облучают ядерными частицами или у-лучами. В результате бомбардировки образуются изотопы, количественно определяемые но их активности. Р. а., обладающий высокой чувствительностью, применяют для определения примесей в металлах и сплавах, полупроводниковых материалах, содержания микроэлементов в крови, ачазме, тканях животных и растений, применяется также в геологических работах и поисках, в судебной экспертизе и др. [c.208]

    Определение ионной силы раствора необходимо для ряда биологических исследований. Например, если изучается действие каких-либо растворов на организм, эти растворы следует готовить так, чтобы они были одинаковой ионной силы. Такие сильные электролиты, как Na l, K l, a la, Mg U и др., содержатся в крови и лимфах органов и тканей животных. Ионная сила крови животных примерно равна 0,15. [c.168]

    ХОЛИНЭСТЕРАЗА, см. Ацетилхолинэстераза. ХОЛОСТОЙ ОПЫТ (контрольный опыт), повторение процедуры хим. анализа в аналогич. условиях (с теми же реагентами, приборами и т. п.), но без анализируемого к ва. Проводят для определения поправки, к-рую необходимо вычесть из значения аналит. сигнала, измеренного при анализе исследуемого в-ва, чтобы получить правильный результат. Иногда поправку специально не определяют, а учитывают непосредственно в ходе измерений аналит. сигнала напр., в дифференц. спектрофотометрии р-р, полученный в X. о., используют в качестве р-ра сравнения. X. о., проведенный без анализируемого в-ва, не всегда позволяет найти правильное значение поправки, т. к. распределение определяемого компонента между фалами в разл. стадиях анализа может зависеть от содержания всех остальных компонентов. Флуктуации результатов X. о. определяют предел обнаружения вещества. Значения поправки X. о. зависят от чистоты реактивов и условий анализа. ХОНДРОИТИНСУЛЬФАТЫ, сульфатированные муко-полисахариды. Входят в состав соединит, тканн животных (хрящей, сухожилий). Углеводные цепи X. (см. ф-лу) по- [c.665]

    При прямом определении этих соединений методом ГХ-МС проблем возникает немного, поскольку вследствие устойчивости этих молекул наблюдается малое количество фрагментных сигналов (см. рис. 9.4-10). Однако, учитывая важность результатов определения ТХДЦ в молоке или тканях животных и низкую концентрацию этих веществ (10 %), требуется провести анализ с большой степенью надежности. [c.286]

    Нередко считается, что окисление липидов касается в основном жирных кислот, которые освободились из глицеролипидов посредством гидролиза. Это представление достаточно точно соответствует определенным процессам обмена веществ, таким, как метаболизм арахидоновой кислоты в тканях животных или окисления, субстратом которых является жирная кислота, связанная с ацетилкоферментом А. Наоборот, при окислениях, происходящих в разрушенных тканях, наблюдают, что жирные кислоты способны окисляться еще в форме ацилглицеринов. [c.289]

    ДеМейс использовал диазотированный /2-нитроанилин для определения фенола в тканях животных. Поглощение он измерял при 500 нм в кюветах с / = 1 см. Закон Бера выполнялся при этом для содержания фенола вплоть до 50 мкг. Такеюки, Фурузава и Такаяма т определяли фенол в метилметакрилате. Они обрабатывали водный раствор образца диазотированным /г-нитроанилином, пиперидином и едким натром и измеряли поглощение полученного оранжевого раствора при 460 нм. С помощью диазотированного /г-нитроанилина Смит и Кинг определяли фенолы, отго- [c.32]

    Поли(винилпиридин-Ы-оксид). в 1958 г. были найдены соединения, способные компенсировать развитие силикоза в тканях животных, подвергшихся воздействию силикозогенных форм кремнезема. Соединение под шифром 48/80 неизвестного состава, представлявшее собой какое-то органическое основание, оказалось эффективным, как это было показано Марксом и др. [347—349], но слишком токсичным для человека. Соединение 48/80 способно просто покрывать поверхность кремнезема. Те же авторы сообщили, что определенные феназины и вызывающие выделение гистамина реагенты снижали токсичность кремнезема. Некоторые защитные свойства наблюдались при применении полимиксина В и гексиламина. [c.1080]

    Биосинтез белков является объектом генетического контроля. В бактериях, во всяком случае, он проявляется на уровне синтеза информационной РНК посредством взаимодействия особого ( регуляторного ) белка со специфическим участком ДНК (см. часть 22 и разд. 24.2.3). В тканях животных на механизмы, контролирующие уровень ферментов, влияют также ингибиторы синтеза РНК [149]. Детали этих механизмов контроля не важны в контексте данного раздела. Важным моментом является факт, что существуют механизмы регуляции концентрации ферментов на определенном метаболитическом пути посредством конечного продукта этого пути. Так, в бактериальных системах хорошо изучены индуцируемые ферменты. Пока субстраты этих ферментов присутствуют в среде, биосинтеза ферментов не происходит. Часто синтез нескольких ферментов какого-либо одного метаболи-тического пути индуцируется присутствием субстрата первого фермента этого пути. Индукция субстратом, таким образом, представляет собой механизм повышения концентрации системы ферментов по мере появления рабочей необходимости . Соответствующий механизм, понижающий избыточную концентрацию фермента, если последний или система ферментов производит слишком большие количества определенного метаболита, получил название репрессии по принципу обратной связи. Классическим примером этого механизма является ингибирование биосинтеза гистидина в Salmonella typhimurium высокими концентрациями гистидина. Концентрации всех десяти ферментов биосинтетической цепи в ответ на изменение концентрации гистидина изменяются совершенно одинаково [150]. [c.535]

    При взаимодействии витаминов с рядом химических соединений наблюдаются характерные цветные реакции, интенсивность окраски которых пропорциональна концентрации витаминов в исследуемом растворе. Поэтому витамины можно определить фотоколориметрически, например витамин B - при помоши диазореактива и т.д. Эти методы позволяют судить как о наличии витаминов, так и о количественном содержании их в исследуемом пищевом продукте или органах и тканях животных и человека. Для выяснения обеспеченности организма человека каким-либо витамином часто определяют соответствующий витамин или продукт его обмена в сыворотке крови, моче или биопсийном материале. Однако эти методы могут быть применены не во всех случаях. Встречаются трудности при подборе специфического реактива для взаимодействия с определенным витамином. Некоторые витамины обладают способностью поглощать оптическое излучение только определенной части спектра. В частности, витамин А имеет специфичную полосу поглощения при 328-330 нм. Измеряя коэффициент поглощения спектрофотометрически, можно достаточно точно определить количественное содержание витаминов в исследуемом объекте. Для определения витаминов B , В, и других применяют флюорометрические методы. Используют и титриметрические методы  [c.207]

    Определенный интерес представляли морфологические сдвиги и нарушения, возникающие в эндокринных железах (гипофиз, надпочечники, щитовидная железа). Обпарул иваемые в органах и тканях животных расстройства гемодинамики и сосудистые изменения приводят к развитию явлений гипоксии и вызывают нарушения трофики. Эти и другие изменения свидетельствуют о том, что при длительном воздействии низких концентраций Р. развивающиеся в организме сдвиги не всегда ограничиваются функциональными расстройствами, а приводят к нерезко выраженным и, как правило, обратимым морфологическим изменениям в головном мозге, эндокринных железах, внутренних органах. Эти изменения отмечались в большинстве случаев при отсутствии внешних проявлений микромеркуриа-лизма. [c.177]

    Для определения фторидов (1—10 мкг в 250 мл воды) Нильсен [48] использовал сильпоосновной анионит в СНзСОО-форме. Элюирование с помощью 0,2—0,3 М МаСНзСОО дает возможность получить, раствор, более концентрированный и притом свободный от ионов,, мешающих спектрофотометрическому определению фторид-иона. Этот метод был применен для исследования образцов атмосферного воздуха и отгонов, получающихся, например, при анализе тканей животных. [c.281]

    R. Е. К i п S е г, Ат. Ind. Hyg. Asso . J., 27. 260 (1966). Определение висмута и теллура в тканях животных методом атомно-абсорбционной спек-тро,фотометрии. [c.215]

Рис. 12-11. Структура сфингомиелина. Впервые сфингомиелин бьш выделен из миелина-по-строенной из мембран оболочки определенных клеток мозга в дальнейшем он был обнаружен в мембранах многих тканей животных. Рис. 12-11. Структура сфингомиелина. Впервые сфингомиелин бьш выделен из миелина-по-строенной из <a href="/info/1532051">мембран оболочки</a> определенных клеток мозга в дальнейшем он был обнаружен в мембранах многих тканей животных.
    Применение. В гистохймии в качестве реактива на дезоксирибозу и рибозу нуклеиновых кислот [1]. Метод дает совершенно отчетливое и различное окрашивание нуклеиновых кислот растительных тканей, однако, результаты, получаемые при исследовании тканей животных, не являются удовлетворительными [Пирс, 176]. В аналитической химии в качестве реактива на Ое, 8Ь, Мо, Зп, Та, N1), и, Т1, 2г, Введен в рациональный ассортимент органических реактивовг на неорганические ионы для определения германия (2, 3) и сурьмы [4, 5] спектрофотометрическим методом. [c.410]

    Тиурам, открытие в резиновых смесях 6696, 6783, 7550, 7551 Тифен. аналитическая характеристика препарата 8059 Ткани, определение дегидроаскорбиновой кислоты и Ре-аскорбин. кис.лоты 6978 нуклеиновых кислот 8382 общей серы 7367 Ткани водоупорной противогнилостной и комбинированной пропитки, озоление 6845 Ткани животных анализ 6433 извлечение жира 7712 определение гликогена 7531 кокарбоксилазы 7203 [c.392]

    Реакции неокислительного дезаминирования аминокислот обнаружены у микроорганизмов и в тканях животных. Ферменты, катализирующие эти реакции, проявляют относительно высокую специфичность — каждый по отношению к одной определенной аминокислоте. При дезаминировании серина, треонина, гомосерина, цистеина и гомоцистеина от молекулы аминокислоты отнимаются элементы воды или сероводород, что приводит [c.194]

    Известно, что глицин относительно легко синтезируется в теле млекопитающих, а также у микроорганизмов и в растениях. Однако при определенных условиях цыплятам необходимо поступление глицина с пищей (стр. 122). К образованию глицина приводят различные реакции — расщепление серина (стр. 325), распад треонина на глицин и ацетальдегид (стр. 336), деметилирование саркозина (стр. 330), аминирование глиоксиловой кислоты (см. стр. 225). Эти реакции обнаружены в тканях животных. В процессе фотосинтеза меченая СОг быстро входит в состав гликолевой кислоты и глицина эти данные указывают на образование глицина из глиоксиловой кислоты [114]. Пути образования глицина у микроорганизмов детально не изучены. Однако имеются данные о взаимопревращении глицина и серина у ряда микробов [115, 116]. У Es heri hia oli глиоксиловая кислота, по-видимому, не превращается в глицин [117], тогда как образование глицина, из серина, вероятно, имеет место [118—120]. [c.319]


Смотреть страницы где упоминается термин Ткани животных определение: [c.205]    [c.244]    [c.286]    [c.1092]    [c.88]    [c.477]    [c.7]    [c.378]    [c.244]    [c.256]    [c.549]    [c.433]    [c.279]   
Аналитическая химия висмута (1953) -- [ c.130 , c.200 , c.203 , c.279 ]




ПОИСК







© 2025 chem21.info Реклама на сайте