Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды состав

    Фосфолипиды (а иногда и иные липиды, например глико- или сульфолипиды) входят в состав всех мембран на их долю приходится около трети массы сухого вещества мембраны. Фосфолипиды связаны с белками мембран слабыми водородными и неполярными связями. У разных мембран состав основания фосфолипида может быть различным, но все они способствуют образованию упо- [c.388]


    Транс-изомер присутствует в сливочном масле, цис-изомер входит в состав липидов многих бактерий. [c.106]

    Влияние ионов Mg, К и Na сказывается прежде всего на интенсивности использования источников углерода, на скорости роста дрожжей и, как следствие, на количестве синтезируемых липидов. Состав липидов не зависит от содержания ионов Mg, К и Na в среде. [c.340]

    Вид живот- ного Содержание липидов Состав фосфолипидов, % от суммы  [c.287]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    Ион (катион) слишком гидрофилен, чтобы эффективно проникать через толстый ( 10 нм) гидрофобный слой липидов и липопротеинов, входящих в состав природны.< и искусственных мембран. Однако селективно связываясь с полярными группами, находящимися внутри макроциклического кольца, катион оказывается покрытым гидрофобной оболочкой, что позволяет ему легче проходить через мембрану. [c.282]

    В производстве, гле главным. ТТРЛРНММ прпдук тп>т ап. ляются микробные липиды, микроорганизмы выращиваются при минимальном азотистом питании. В этом случае они накапливают значительные количества (до 20% от массы клетки) липидов, состав которых зависит от используемого источника углерода. В липидную фракцию входят фосфолипиды, стерины, свободные жирные кислоты, MOHO-, дп- и триглицериды, стериновые эфиры и воски. Липиды извлекают экстракцией, а оставшуюся биомассу используют как белковую добавку в корма животных, однако содержание белка в ней в 1,5—2,0 раза меньше, чем в обычных кормовых дрожжах. [c.8]


    До сих пор мы рассматривали нефтяные нентациклические углеводороды ряда гопана. Безусловно, эта структура является главной для тритерпанов любых нефтей. В геохимическом аспекте весьма симптоматично, что именно гопаны, скелет которых создается простейшей прокариотической клеткой бактерий или сине-зеленых водорослей, занимают такое ведуш ее положение в нефтях [48, 54]. Следует предположить, что углеводороды ряда гопана представляют собой результат деятельности древних микроорганизмов и среди прочих соединений входили в состав липидов их клеточных мембран, т. е. образование гопанов происходило на стадии раннего диагенеза органического вещества осадков. [c.138]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

Таблица 20.1. Наиболее распространенные жирные кислоты, входящие в состав липидов Таблица 20.1. Наиболее <a href="/info/847564">распространенные жирные кислоты</a>, входящие в состав липидов
    К природным ПАВ относятся разнообразные биологически активные вещества, среди которых особенно важное значение для жизнедеятельности организмов имеют липиды и белки, а также холевые кислоты, входящие в состав желчи. [c.96]

    Другой большой класс белков образуют фибриллярные белки. Они выполняют в организме главным образом роль структурных материалов. К их числу относится кератин, входящий в состав кожи, волос, шерсти, ногтей и других роговых тканей. К другому типу фибриллярных белков относится коллаген, находяищйся в сухожилиях, подкожном слое и роговице глаз к фибриллярным относятся белки шелка и тканей насекомых. Белки, углеводы и липиды (жиры с длинными цепями и жирные кислоты) играют роль строительных материалов в любых живых организмах. [c.313]

    ОПИЙ сложная смесь сахаров, белков, липидов, смол, восков, пигментов, воды и т д. В его состав входят более 50 активных алкалоидов, составляющих 10—20% обшей массы. Их относительные количества зависят от условий произрастания, климата, сорта и возраста растений и т.п. [c.7]

    Входят а состав липидов растений. [c.105]

    В процессе роста биомассы в дрожжевой клетке происходит ферментативный синтез белка, липидов, углеводов, витаминов Состав товарных Д к определяется видом сырья, используемого для приготовления питат сред (см табл) [c.120]

    ТСХ применяют для разделения и анализа как орг., так и неорг. в-в практически всех неорг. катионов и мн. анионов, в т. ч. близких по св-вам ионов благородных металлов, РЗЭ, а также полимеров, лек. ср-в, пестицидов, аминокислот, липидов, алкалоидов и т. д. С помощью ТСХ удобно анализировать микрообъекты (малые кол-ва в-в), оценивать чистоту препаратов, контролировать технол. процессы и состав сточных вод, изучать поведение разл. ионных форм элементов, предварительно подбирать условия для колоночной хроматографии. [c.609]

    Воска представляют собой сложные смеси высоконеполярных липидов. Состав смеси различен у разных растений и часто специфичен для того или иного растения. Природные воска содержат некоторое количество свободных жирных кислот, высокомолекулярных спиртов (С24--С28) и углеводородов парафинового ряда. Преобладающие компоненты смеси - сложные эфиры воска. [c.59]

    Какая масса сырого иротеина и углеводов может быть получена при производстве 50 тыс. т кормовых дрожжей, имеющих следующий состав (в массовых долях) влага 0,10, сырой протеин 0,55, липиды 0,05, углеводы 0,18, кислоты 0,05. [c.288]


    Групповой химический состав растений. Все живые организ — мы состоят в основном из следующих четырех классов органических веществ углеводов, липидов, белков и лигнина. [c.47]

    Получение масла из мякоти плодов. Процесс сводится к сушке жома (жмыха), измельчению и извлечению из него масла. Для этой цели жмых измельчают в дробилке и подвергают сушке на паровой конвейерной сушилке типа ПКС-10 при 75° в течение 1—1,5 ч до влажности 6—7%. Выход сухого жмыха составляет 7,5—9,0% к массе свежего сырья. Состав сухого жмыха (в %) масла е плодовой мякоти — 15—27, каротина — 12—16 мг%, семян — 45—55%, влажность 4,0—7,0. Процесс экстракции масла из жмыха осуществляют в настоящее время по методу В. Казанцева и А. Охина в батарее из 22 диффузоров подсолнечным или кунжутным маслом при 50— 65° С. Полный оборот батареи 24 ч. Отбор масла из головного диффузора происходит каждые 1,0—1,5 ч. Из хвостового диффузора соответственно выгружают жмых с масличностью 45—50%. В специальном шнековом прессе (экспеллере) отжимают масло из жмыха. Недостатками данного метода диффузии являются потери каротина достигают 20—22%, получаемое масло содержит 15—20% подсолнечного, высокое кислотное число масла, достигающее 10,0—15,0. В связи с этим возник вопрос о применении органического растворителя для экстракции липидов облепихи. В результате проведенных исследований процесса экстракций с различными растворителями (петролейный эфир, дихлорэтан, бензол и хлористый метилен) наиболее эффективным является хлористый метилен (дихлорметан, СН2С12). Последний имеет низкую температуру кипения (41—42°), плотность при 20° С 1336 кг/м , малотоксичен. При экстракции этим растворителем может быть получен высокий выход масла (95%) и каротина (97%) [21]. По-видимому, Экстракция масла из жмыха хлористым метиленом будет наиболее эффективна. Необходимо лишь отработать вопрос полного удаления растворителя из готового продукта. [c.376]

    Если химический состав технических и пищевых жиров относительно хорошо изучен, то аналогичные сведения по составу жиров водорослей, 300-, фитопланктона и бактерий довольно ограничены. Лишь в общем случае можно стметить, что в жировом материале морских водорослей и зоопланктона значительно преобладают ненасыщенные кислоты над насыщенными. Наиболее характерно для липидов наличие в них в значительном количестве (до 35%) неомыляемых веществ, и чем примитивнее организм, тем их больше. [c.31]

    ЛИПИДЫ (греч. lipos — жир) —жиры и жироподобные вещества, органические соедииения растительного и животного происхождения, различные по составу, но близкие по 1ризико-химическим свойствам. Л. нерастворимы в воде, хорошо растворяются в органических растворителях. К Л. относятся кнры, воск, фосфатиды, стерины (например, холестерин) и стероиды. Л. относятся к числу важных в биологическом отношении веществ, входящих в состав всех живых клеток. Л. выделяют из биологических источников органическими растворителями, индивидуальные Л, выделяют с помощью хроматографических методов. Л. широко применяются как продукты питания, в медицине и в различных отраслях промышленности. [c.148]

    Липиды, входящие в состав вещества мембран, содержат фосфор. Это так называемые фосфолипиды, структура молекул которых как будто специально приспособлена для создания макрогете-рогенных структур и поверхностей раздела. Дело в том, что многие биологически важные вещества состоят из молекул, в которых можно обнаружить как гидрофильную часть, т. е. группы атомов (как, например, ОН, СООН, NH2), и гидрофобную, состоящую из углеводородных цепей, или циклов. Последние также окружены молекулами воды, но сближение и объединение углеводородных частей, связанные с частичным разрушением упорядоченной водной оболочки, дают в итоге убыль соответствующего термодинамического потенциала, поэтому между углеводородными частями различных молекул в водной среде обнаруживаются силы притяжения ( гидрофобные силы ). Строение фосфолипидов можно представить себе, если в молекуле глицерина заместить два гидроксильных атома водорода на остатки жирных кислот, а третий [c.387]

    Желчные кислоты — это стероидные соединения, содержащие карбоксильную и несколько гидроксильных групп. Они входят в состав желчи и помогают организму использовать содержащиеся в пище липиды, эмульгируя их и способствуя тем самым их усвоению в кишечнике. Большая часть желчных кислот является производными холановой кислоты. Одна из них, хе-нодезоксихолевая кислота, проходит клинические испытания [c.225]

    Жирные кислоты (неразветвленные алифатические карбоновые кислоты с длинной цепью) в свободном состоянии встречаются только в следовых количествах, однако они являются одной из групп простых молекул, образующих многие липиды. Ацилированные фрагменты молекул, чаще всего содержащиеся в основных липидных группах, являются производными неразветвленных алифатических кислот с четным числом углеродных атомов, обычно Си—С22, но наиболее распространены кислоты С16 и С18. Найдены производные полностью насыщенных и моно-и полиненасыщенных кислот, однако производные карбоновых кислот с группой С С встречаются так же редко, как и с разветвленными цепями или с еще более сложными структурами. Среди ненасыщенных кислот более распространены соединения с г ис( 2)-стереохимической конфигурацией по сравнению с т ранс( )-стереоизомерами, и чаще встречаются несопряженные полиненасыщенные изомеры. Довольно обычны полинена-сыщенные ацильные производные, содержащие группу СН = СН—СНг. Некоторые из наиболее распространенных жирных кислот, входящих в состав липидных соединений, перечислены в табл. 20.1. [c.330]

    Жиры являются разновидностью класса природных органических соединений, называемых липидами. Липиды— это вещества, в.кодящие в состав животных и растительных тканей п являющиеся производными высших карбоновых кислот, спиртов и других соединений. [c.419]

    Кроме жиров к липидам относятся воски — сложные эфиры высших карбоновых кислот и высших спиртов. Например, воском является эфир цетилового спирта (С15Н31СН2ОН) и пальмитиновой кислоты С15Н31СООС15Н31. Этот воск входит в состав пчелиного воска II вещества спермацета, содержащегося в голове кита. [c.420]

    Были найдены и идентифицированы различные гидропероксидные и эндопероксидные продукты окисления полиненасыщенных жирных кислот, входящих в состав липидов и фосфолипидов. [c.31]

    Н.И. Жильцов с соавторами увеличение доли нормальных кислот с глубиной объясняет влиянием процессов катагенеза. По нашему же мнению, это является главным образом следствием биодеградации. Дополнительным тому подтверждением служит характер распределения циклических кислот в разных нефтях. В биодеградированных нефтях (месторождения Русское, Ванъеганское, Лянторское) более 60 % приходится на долю MOHO-, би- и трициклических нафтеновых кислот, в то время как доля гексациклических в 10 раз меньше. В нефтях Салымского и Мамонтовского месторождений содержание гексациклических кислот соизмеримо с содержанием моно-, би- и трициклических или даже больше. С позиций катагенеза картина должна быть обратной. Состав кислот из биодеградированных нефтей служит достаточно убедительным доказательством их образования при окислении соответствующих нафтеновых УВ, поскольку именно эти соединения являются основными среди цикланов (см. рис. 14). В пользу этого также свидетельствуют результаты измерения и.с.у. кислот (см. табл. 15). Изокислоты имеют такой же и.с.у., что и исходная нефть. У нормальных кислот и.с.у. значительно тяжелее и.с.у. изокислот и нефти. Нами была высказана мысль о разном генезисе нормальных и нафтеновых кислот [3]. Возможно алифатические кислоты, представленные в основном нормальными соединениями, произошли из липидов, в то время как нафтеновые кислоты образовались путем биохимического окисления соответствующих нафтеновых УВ. Не совсем ясно, однако, различие состава циклических кислот биодеградированных и небиодеградированных нефтей. [c.85]

    Наиб, высокоиммуногенные А.-белки и полисахариды. Иммунные р-ции могут также вызывать нуклеиновые к-ты и липиды, входящие в состав липидо-белковых комплексов. Среди искусств. А. различают модифицированные, получаемые в результате хим. модификации того или иного в-ва, чаще всего белковой природы, и полностью синтетические. [c.174]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Липидный состав клеточных мембран изменчив. В меньшей степени это проявляется в животных клетках, находящихся в условиях стабильной внутр. среды. Однако и в этом случае можно модифицировать состав липидов в нек-рых мембранах, меняя пнщ. рацион. Липидный состав мембран растений заметно измейяется в зависимости от освещенности, т-ры н pH. Еще более изменчив состав бактериальных мембран. Он варьирует не только в зависимости от штамма, но и в пределах одного и того же штамма, а также от условий культивирования и фазы роста. У вирусов, имеющих липопротеиновую оболочку, липидный состав мембран также не постоянен и определяется составом лршидов клетки-хозяина. [c.29]

    Общие сведения. Высшие полисахариды — полимеры, состоящие из множества структурных звеньев - остат-ков моносахаридов. По принятой классификации углеводов к высшим полисахаридам относят соединения, в состав молекул которых входит более 10 остатков моноз. Они не обладают сладким вкусом, не кристаллизуются ИЯ водных растворов, болг.ишпство из них образует коллоидные растворы. При гидролитическом расн1епле-нии, катализируемом кислотами или ферментами, полисахариды распадаются ла олнго- и моносахариды. Остатки моноз в молекулах полисахаридов соединены гликозидными связями в длинные, часто разветвленные цепи. В зависимости от вида моно , образующих молекулу полисахарида, различают гомо- и гетерополисахариды. Молекулы гомополисахаридов состоят из многочисленных остатков одного моносахарида (глюкозы, фруктозы, галактозы, маннозы и т. д.). В состав молекул гетерополисахаридов входят разнообра.чпые монозы, причем они часто связаны с неуглеводными компонентами (липидами, белками, аминокислотами и т. д.). [c.214]


Смотреть страницы где упоминается термин Липиды состав: [c.85]    [c.115]    [c.348]    [c.116]    [c.33]    [c.180]    [c.65]    [c.31]    [c.303]    [c.422]    [c.665]    [c.185]    [c.156]    [c.598]    [c.602]    [c.602]    [c.28]    [c.139]   
Химия биологически активных природных соединений (1976) -- [ c.197 , c.218 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.13 , c.14 , c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте