Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Транспорт в через бислой

    Транспорт через бислой [c.30]

    Такое разделение транспортных систем вытекает непосредственно из жидкостно-мозаичной модели мембраны. Различия систем особенно важны в связи с тем, что механизмы транспорта через бислой, по-видимому, являются общими для различных мембран, а белковые транспортные системы в различных мембранах различны. Характеристики этих двух форм транспорта мы рассмотрим раздельно. [c.34]


    Липидный бислой определяет основные структурные особенности биологических мембран, тогда как белки ответственны за большинство мембранных функций. Они выступают в качестве специфических рецепторов и ферментов, осуществляют транспорт через мембрану различных веществ и т. д. Большинство мембранных белков пронизывает бислой в виде одиночной а-спирали но есть и такие, которые пересекают бислой несколько раз в виде серии а-спиралей. Следующая группа белков ассоциирует с мембраной, не пересекая бислой, а прикрепляясь к той или другой стороне мембраны. Многие из этих белков связаны нековалентными взаимодействиями с трансмембранными белками, есть и такие, которые [c.376]

    Вероятно, у разных компонентов дыхательной цепи существуют разные механизмы сопряжения транспорта электронов с перемещением протонов. Аллостерические изменения конформации белковой молекулы, связанные с транспортом электронов, могут в принципе сопровождаться перекачиванием протонов, подобно тому как перемещаются протоны при обращении действия АТР-синтетазы (разд. 7.2.3). Кроме того, как уже упоминалось, при переносе каждого электрона хинон захватывает из водной среды протон, который затем отдает при высвобождении электрона (см. рис. 7-30). Поскольк убихинон свободно передвигается в липидном бислое, он может принимать электроны вблизи внутренней поверхности мембраны и передавать их на комплекс b- i около ее наружной поверхности, перемещая при этом через бислой по одному на каждый перенесенный электрон. С помощью более сложных моделей можно объяснить и перемещение комплексом Ь-С двух протонов на каждый электрон, предположив, что убихинон повторно проходит через комплекс b- i в определенном направлении. [c.456]

Рис. 37. Виды пассивного и активного транспорта веществ через мембрану /, 2 — простая диффузия через бислой и канальную структуру, 3 — облегченная диффузия, 4 — первично-активный транспорт, 5 — вторично-активный транспорт Рис. 37. Виды пассивного и <a href="/info/1485151">активного транспорта веществ через</a> мембрану /, 2 — <a href="/info/263196">простая диффузия</a> через бислой и <a href="/info/512494">канальную структуру</a>, 3 — облегченная диффузия, 4 — <a href="/info/1581636">первично-активный транспорт</a>, 5 — <a href="/info/97005">вторично-активный</a> транспорт
Рис. 6-44. Схематическое изображение пассивного транспорта молекул по электрохимическому градиенту и активного транспорта против Простая диффузия и пассивный транспорт, осуществляемый транспортными белками (облегченная диффузия) протекают самопроизвольно Для активного транспорта необходимо использовать метаболическую энергию. Только неполярные и маленькие незаряженные полярные молекулы могут проходить через липидный бислой путем простой диффузии. Перенос других полярных молекул осуществляется со значительными Рис. 6-44. <a href="/info/376711">Схематическое изображение</a> <a href="/info/188204">пассивного транспорта</a> молекул по <a href="/info/191333">электрохимическому градиенту</a> и <a href="/info/97001">активного транспорта</a> против <a href="/info/263196">Простая диффузия</a> и <a href="/info/188204">пассивный транспорт</a>, осуществляемый <a href="/info/150412">транспортными белками</a> (облегченная диффузия) <a href="/info/1460568">протекают самопроизвольно</a> Для <a href="/info/97001">активного транспорта</a> необходимо использовать <a href="/info/1435336">метаболическую энергию</a>. Только неполярные и маленькие незаряженные <a href="/info/4876">полярные молекулы</a> могут <a href="/info/336204">проходить через</a> <a href="/info/265833">липидный бислой</a> путем <a href="/info/263196">простой диффузии</a>. <a href="/info/510926">Перенос других</a> <a href="/info/4876">полярных молекул</a> осуществляется со значительными

    Если температура мембраны опускается ниже точки ее замерзания, подвижные переносчики уже не могут диффундировать через липидный бислой, и ионный транспорт прекращается. Наличие такой температурной зависимости свидетельствует о том, что данный ионофор - это подвижный переносчик. Если же транспорт ионов продолжается даже в замороженном бислое, можно сделать вывод, что его осуществляет каналообразующий ионофор. [c.406]

    Белки-каналы образуют в бислое заполненные водой поры, позволяя, таким образом, неорганическим ионам подходящего размера и заряда перемещаться через мембрану по их электрохимическим градиентам. Скорость прохождения в этом случае по крайней мере в 1000 раз выше, чем при транспорте с помощью белков-переносчиков. Эти ионные каналы имеют ворота и обычно открываются на короткое время в ответ на специфические возбуждения в мембране, такие, как связывание нейротрансмиттеров (нейротрансмиттер-зависимые воротные каналы) или изменение мембранного потенциала (потенциал-зависимые воротные каналы).  [c.407]

    Одно из самых значительных достижений рентгеноструктурного анализа белков последних лет, которое не может не повлиять на дальнейшее развитие биологии и становление ее новой области -молекулярной биологии клетки, состоит в начавшейся расшифровке трехмерных структур первых мембранных белков. Перед обсуждением полученных здесь результатов целесообразно кратко сообщить о том, что было известно об этих белках до исследования их с помощью рентгеновской дифракции. Если основные структурные особенности биологических мембран определяются молекулами липидного бислоя, то специфические функции мембран выполняются главным образом белками. Они ответственны за процессы превращения энергии, выступают в качестве рецепторов и ферментов, образуют каналы активного и пассивного транспорта молекул и ионов различных веществ через мембраны, охраняют организм от проникновения чужеродных антигенов и стимулируют иммунный ответ клеточного типа. В обычной плазматической мембране белок составляет около 50% ее массы. Однако в некоторых мембранах, например во внутренних мембранах митохондрий и хлоропластов, его содержание поднимается до 75%, а в других, например миелиновой мембране, снижается до 25%. Многие мембранные белки пронизывают липидный бислой насквозь и контактируют с водной средой по обеим сторонам мембраны. Молекулы этих белков, называемых трансмембранными, как и окружающие их молекулы липидов, обладают амфипатическими свойствами, поскольку содержат гидрофобные участки, взаимодействующие внутри бислоя с гидрофобными хвостами липидов, и гидрофильные участки, обращенные к воде с обеих сторон мембраны. Другая группа мембранных белков соприкасается с водой только с одной стороны бислоя [234, 235]. Одни из них погружены только во внешний или во внутренний слой мембраны, другие ассоциированы за счет невалентных взаимодействий с трансмембранными белками, третьи прикреплены к мембране с помощью ковалентно связанных с ними цепей жирных кислот, внедренных в липидный слой. [c.56]

    Может наблюдаться два типа транспорта с помощью переносчика активный и пассивный транспорт. В случае пассивного транспорта проницаемость растворителя обеспечивается благодаря градиенту концентрации через мембрану. Обычно липидный бислой являет- [c.80]

    На рис. 15 приведена упрощенная схема одного из участков внутренней митохондриальной мембраны. Ее основу образует фосфолипидный бислой, в который встроены различные компоненты цепей переноса электронов, молекулы АТФ-аз, а также белки, участвующие в транспорте ионов через сопрягающие мембраны. [c.56]

    Свойства белковых систем, катализирующих транспорт через сопрягающие мембраны, обычно сильно отличаются от свойств бислойных участков как в присутствии, так и в отсутствие ионофоров. Транспортные белки обладают многими свойствами, присущими ферментам они проявляют стереоспецифичность, часто их можно специфически ингибировать, они генетически детерминированы. Последнее обстоятельство делает невозможной ту степень обобщения, которая применима к транспорту через бислой. Например, если РССР (рис. 2.5) индуцирует протонную проводимость в митохондриях, то можно смело полагать, что его эффект будет тем же в случае хлоропластов, бактерий или искусственного бислоя. В отличие от РССР транспортный белок может быть специфическим не только для данной органеллы, но и для органеллы из определенной ткани. Например, переносчик цитрата существует в митохондриях из печени, где он участвует в переносе промежуточных соединений синтеза жирных кислот (разд. 8.3), но отсутствует в митохондриях из сердца. Иногда утверждают, что для белковых транспортных систем характерна кинетика насыщения. Хотя в некоторых случаях это может быть верным, в целом кинетика транспортных процессов настолько сложна (особенно если они зависят от мембранного потенциала), что интерпретация ее требует большой осторожности. [c.40]


    Функции ряда белков установлены. Наибольшая фракция — полоса 3 — представлена интегральным белком гликопротеином с молекулярной массой 90 кДа, который взаимодействует с мембраной и одновременно обеспечивает транспорт ионов через бислой, а также связывание ряда цитоплазматических ферментов. Белок полосы 3 через анкерин (полоса 2,1) взаимодействует со спект-рином — основным белком цитоскелета, составляющим двумерную сеть, к которой прикрепляется актин. При электрофорезе актин выявляется в полосе 5. Белки полос 8, 9 и 10 относятся к семейству гликофоринов (см. рис. 23). [c.56]

    Самым убедительным доказательством участия белка в транспорте является существование специфических ингибиторов. Например, долгие годы считалось, что пируват проникает в митохондрии через бислой. Это вполне возможно, так как он является монокарбоновой слабой кислотой. Однако было обнаружено, что цианогидроксицинамат (разд. 8.3) специфически ингибирует транспорт. Это явилось первым строгим доказательством существования переносчика пирувата (ЬаКоие, 5с1юо1шог111, 1979). [c.40]

    Л. широко используют в качестве модельных систем при изучении принципов мол. организации и механизмов функционирования биол. мембраи. Они пригодны для изучения пассивного транспорта ионов н малых молекул через липидный бислой. Изменяя состав липидов в Л., можно направленно менять св-ва мембран. Включением мембранных белков в липидный бислой получают т. наз. п р о т е о-липосомы, к-рые используют для моделирювания разнообразных ферментативных, транспортных и рецепторных ф-ций клеточных мембран. Л. используют также в иммунологич. исследованиях, вводя в них разл. антигены или ковалентно присоединяя к Л. антитела. Они представляют собой удобную модель для изучения действия на мембраны мн. лек. ср-в и др. биологически активных в-в. Во виутр. водный объем Л. (в т. ч. полимерных) можно включать лекарства, пептиды, белки и нуклеиновые к-ты, что создает возможность практич. примеиеиия Л. в качестве ср-ва доставки разных в-в в определенные органы н ткани. [c.604]

    Почему мембранные липиды должны обладать подвижностью Одна из причин связана, вероятно, с участием мембран в жизненно важных процессах транспорта. Биологические мембраны характеризуются. довольно высокой проницаемостью для нейтральных молекул (в том. числе НгО), причем при температурах, превышающих Тх, цепи жирных кислот могут свободно поворачиваться вокруг одинарных связей на 120 °С, переходя из транс- в скошенную (гош-) конфигурацию. В результате такого вращения вокруг соседних или близко рааположенных связей возникают изломы цепочек жирных кислот. Если излом образуется вблизи поверхности бислоя (как это чаще всего и происходит) то в образовавшуюся полость легко может проскочить небольшая молекула. Поскольку излом легко перемещается по бислою, небольшие-молекулы могут свободно проникать через мембрану [23]. Не исключено, что эти же факторы обеспечивают перенос и более крупных молекул, играющих роль переносчиков в мембранном транспорте. [c.348]

    Предполагают, что механизмы такого действия стероидов включают проникновение гормона вследствие легкой растворимости в жирах через липидный бислой клеточной мембраны, образование стероидрецеиторного комплекса в цитоплазме клетки, последующее преобразование этого комплекса в цитоплазме, быстрый транспорт в ядро и связывание его с хроматином. Считают, что в этом процессе участвуют как кислые белки хроматина, так II непосредственно ДНК. В настоящее время разработана концепция [c.276]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Функции липидной части мембраны. Липиды, входящие в состав мембран, служат растворителем для их интегральных белков, барьером проницаемости для полярных молекул. Гидрофобные жирорастворимые вещества легко проходят через липидный бислой. Малые молекулы газов — кислород, двуокись углерода и азот легко диффундируют через гидрофобную область мембраны. Липиды мембраны обеспечивают ее жидкостность или текучесть. Жесткость определяется степенью насыщенности жирных кислот в фосфолипидах и наличием холестерина. Текучесть мембраны тем ниже, чем выше насыщенность жирных кислот и чем больше содержание холестерина. От нее зависят такие функции мембраны, как транспорт веществ через мембрану, взаимодействие рецепторов с лигандами. Основой старения и атеросклероза является понижение жидкостности мембран. [c.101]

    Процесс, с помощью которого белки-переносчики специфически связывают и транспортируют растворенные молекулы через липидный бислой, напоминает ферментативную реакцию, а транспортные белки выступают как особые, связанные с мембраной, ферменты. В белках-переносчиках всех типов имеются участки связывания для транспортируемой молекулы (субстрата). Когда белок насыщен (т. е. когда все участки связывания заняты), скорость транспорта максимальна. Эта скорость, обозначаемая Vmax, является характеристикой данного белка-переносчика. Кроме того, каждый белок-переносчик имеет характерную для него константу связывания Км, равную концентрации транспортируемого вещества, при которой скорость транспорта составляет половину ее максимальной величины (рис. 6-45). Связывание растворенного вещества может быть специфически блокировано как конкурентными ингибиторами (конкурирующими за тот же участок связывания), так и неконкурентными ингибиторами (связывающимися где-нибудь в другом месте и специфически влияющими на структуру переносчика). Однако в данном случае аналогия с реакцией фермент-субстрат неполная, поскольку транспортируемые вещества обычно не модифицируются ковалентно белками-нереносчиками. [c.383]

    У бактерий и растений большинство систем активного транспорта, приводяшихся в действие ионными градиентами, используют в качестве котранспортируемого иона Н", а не Na". В частности, активный транспорт большей части Сахаров и аминокислот в бактериальные клетки обусловлен градиентом Н" через плазматическую мембрану. Наиболее хорошо изученный пример гакого рода - переносчик лактозы (пермеаза). Этот трансмембранный белок, состоящий из одной полипептидной цепи (длиной около 400 аминокислотных остатков), но-видимому, пересекает липидный бислой по крайней мере девять раз. Он осуществляет Н"-зависимый симнорт с каждой транспортируемой в клетку молекулой лактозы переносится один протон. [c.391]

    Слои эпителиальных клеток покрывают поверхность тела и выстилают все его полости. Несмотря на значительные биохимические различия, у этих слоев есть по крайней мере одна общая функция они служат высокоселективными барьерами, разделяющими очень различные по химическому составу внутренние и наружные жидкости. Ведущую роль в поддержании функции эпителиев как селективных барьеров играют плотные контакты. Например, эпителиальные клетки, выстилающие тонкий кишечник, должны удерживать большую часть его содержимого в просвете кишки и в то же время должны перекачивать оттуда во внеклеточную тканевую жидкость определенные питательные вещества, которые затем всасываются в кровь. Такой перенос осуществляют две группы специализированных транспортных белков одна из них находится на апикальной поверхности эпителиальных клеток (эта поверхность обращена к просвету кишечника) и транспортирует в клетку избранные молекулы, а другая-на базальной и латеральной (или, как говорят, базолате-ральной) поверхности и вновь откачивает эти молекулы из клетки с другой стороны (рис. 12-24). Очевидно, что для поддержания направленного транспорта апикальные насосы не должны диффундировать (в плазматической мембране) на базолатеральную поверхность и наоборот. Кроме того, необходимо предотвратить обратную утечку транспортируемых молекул в полость кишечника. Плотные контакты обеспечивают оба этих условия. Во-первых, они служат препятствием для диффузии молекул в липидном бислое плазматической мембраны. Во-вторых, они так герметично соединяют соседние клетки, что через образующийся непрерывный клеточный слой не проникают даже малые молекулы. [c.213]

    Тени эритроцитов, полученные путем гипоосмотического гемолиза и отмытые от гемоглобина в изотоническом буфере, содержат около 50 % белков, 43 % липидов и 7 % углеводов. Белковые компоненты мембраны были идентифицированы методом электрофореза в ПААГ в присутствии додецилсульфата натрия. В соответствии с локализацией их подразделяют на периферические и интегральные (см. главу 1). Периферические белки расположены на поверхности мембраны и им соответствуют полипептидные полосы 1, 2, 4, 5 и 6. Интегральные белки погружены в липидный бислой и в некоторых случаях пронизывают его. Основным интегральным белком является белок полосы 3, осуществляющий транспорт анионов через мембрану. Его М-конец находится с цитоплазматической стороны, а С-конец погружен в бислой с наружной стороны мембраны. Периферические белки взаимодействуют друг с другом, образуя двумерный каркас, выстилающий внутреннюю поверхность эритроцитарной мембраны, который называют мембранным скелетом. Он содер- [c.230]

    Переход в фазу геля липидов, иммобилизованных белками, приводит к снижению активности ферментов, что выявляется на графиках Аррениуса в виде изломов кривых. Эти фазовые превращения могут привести к различным последствиям нарушить активный и пассивный транспорт метаболитов и ионов, синтез веществ, производство энергии в клетке. В некоторых типах мембран (например, Е. oli) кроме фазово-структурных переходов анулярных липидов может происходить латеральное разделение липидов в бислое, что способствует формированию трансмембранных дефектов, через которые содержимое клетки может покидать цитоплазму. В развитии дефектов в мембране важную роль играют холестерин и Са +. Холестерин следует рассматривать как термальный буфер его содержимое в мембране непосредственно определяет ширину температурного интервала фазовых переходов в липидном матриксе. [c.42]

    B табл. 8.1 приведен список основных переносчиков метаболитов, которые были обнаружены во внутренней мембране митохондрий однако, возможно, этот список не полон. Транслоказу адениновых нуклеотидов и фосфатный переносчик мы уже рассмотрели выше в связи с синтезом АТР (разд. 7.6). Поскольку окислительное фосфорилирование является универсальной функцией митохондрий, эти два переносчика всегда в них присутствуют. Основными субстратами митохондрий in vivo являются пируват и жирные кислоты, поэтому переносчики пирувата и карнитина также широко распространены. Существование специфического переносчика пирувата было твердо установлено лишь относительно недавно. Дело в том, что пируват является монокарбоновой кислотой, и предполагалось, что он может проникать через липидный бислой без частия переносчика, как это происходит в случае ацетата (ра.зд. 2.4). Однако кинетика с насыщением и существование специфического ингибитора транспорта — цианогидроксициннамата убедительно доказали участие в этом процессе переносчика. Как и в случае многих других переносчиков, здесь происходит либо антипорт пиру-ват /ОН-, либо симпорт пируват-/Н+, что нельзя различить в условиях эксперимента. [c.165]

    Поскольку внутренняя часть липидного бислоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Благодаря такому барьеру предотвращается утечка водорастворимого содержимого клеток. Однако из-за наличия подобного барьера клетки оказались вынужденными создать специальные пути для переноса водорастворимых молекул через свои мембраны. Клетки должны получать необходимые питательные вещества и выделять вредные продукты метаболизма. Кроме того, клеткам надо регулировать внутриклеточные концентрации ионов, что подразумевает возможность транспорта определенных ионов в клетку или из клетки. Перенос малых водорастворимых молекул через липидный бислой осуществляется с помощью особых трансмембранных белков, каждый из которых отвечает за транспортировку определенной молекулы или фуппы родственных молекул. В клетках существуют также способы пфеноса через плазматические мембраны макромолекул, таких, как белки, и даже крупных частиц. Однако соответствующие механизмы сильно отличаются от механизмов транспорта малых молекул и потому будут обсуждаться в другом разделе (см. разд. 6.5). [c.379]

    Другой основной путь транспорта используется при синтезе белков, предназначенных для выведения из клетки, а также белков, которые должны стать компонентами ЭР, аппарата Гольджи, плазматической мембраны или лизосом Все эти белки по мере их образования переносятся в ЭР при помощи сигналов сортировки, расположенных обычно на Н-конце Рибосомы, на которых собираются такие белки, остаются связанными с мембраной ЭР в течение недолгого времени после начала синтеза полипептидной цепи Как только очередной участок полипептидной цепи синтезируется, он проникает через липидный бислой этой мембраны Некоторые белки затем попадают в просвет ЭР, другие остаются частично заключенными в меТ Лбрану в качестве трансмембранных белков [c.13]

    Клетки обладают специальным механизмом для транспорта растворимых белков из цитозоля к мембранам Такие белки ковалентно связываюгтся с цепью жирной кислоты, которая затем встраивается в липидный бислой с цитоплазматической стороны, зажоривая в нем белок Связывание белка с мембраной через жирную кислоту может иметь важные функциональные последствия Например, онкоген ггс вируса [c.19]


Смотреть страницы где упоминается термин Транспорт в через бислой: [c.379]    [c.395]    [c.13]    [c.19]    [c.139]    [c.220]    [c.139]    [c.369]    [c.395]   
Биоэнергетика Введение в хемиосмотическую теорию (1985) -- [ c.34 ]




ПОИСК







© 2025 chem21.info Реклама на сайте