Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физическая абсорбция кинетика

    Во многих промышленных процессах очистки газовых потоков абсорбционным методом поглощение целевого компонента жидким поглотителем сопровождается химическим взаимодействием молекул абсорбтива с молекулами активного компонента абсорбента и переходом его в связанное состояние. При этом концентрация компонента в жидкости уменьшается, что приводит к увеличению градиента концентраций и ускорению поглощения абсорбтива в жидкой фазе по сравнению с физической абсорбцией. Таким образом, в этом случае кинетика абсорбции определяется не только скоростью массообмена, но и кинетическими закономерностями реакции. В зависимости от того, какая скорость определяет общую скорость переноса массы целевого компонента, различают кинетическую и диффузионную области протекания хемосорбции. В кинетической области лимитирующей является скорость химического взаимодействия, в диффузионной области — скорость диффузии целевого компонента в зоне реакции Если скорости реакции и массопередачи соизмеримы по величине, то процесс протекает в смешанной, диффузионно-кинетической области. [c.244]


    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ 85 [c.85]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ [c.85]

    В данной главе рассматриваются вопросы кинетики абсорбции применительно к физической абсорбции и хемосорбции, а также экспериментальные методы изучения кинетики абсорбции. Вопросы кинетики, связанные с изменением движущей силы вдоль поверхности раздела, вызванным движением фаз, изложены в главах III и IV. [c.85]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ 87 [c.87]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ 91 [c.91]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ 93 [c.93]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ 99 [c.99]

    При изучении хемосорбционных процессов следует совместно рассматривать закономерности массопередачи и химической кинетики, так как скорости диффузионных этапов и химических стадий могут быть сопоставимы. Поэтому количественная характеристика хемосорбционных процессов связана со многими дополнительными факторами. Реакция в жидкой фазе понижает концентрацию поглощаемого газового компонента в жидкости, что увеличивает движущую силу процесса и ускоряет его по сравнению с физической абсорбцией. Увеличение общей скорости процесса тем больше, чем выше скорость реакции в жидкой фазе. В соответствии с этими особенностями при количественном выражении хемосорбционных процессов обычно вводятся поправки к величине движущей силы или коэффициента массопередачи, которые характеризуют равновесие и скорость реакции в жидкой фазе. При значительных скоростях реакции сопротивление жидкой фазы становится пренебрежимо малым. Наоборот, при медленной реакции ускорение процесса также мало и им можно пренебречь, рассматривая процесс как физическую абсорбцию. Движущую силу абсорбционных процессов наиболее точно можно выразить следующим образом [см. формулу (VI.14)]  [c.161]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ ЦЗ [c.113]

    Кинетику процессов с участием жидких и газообразных реагентов можно рассмотреть на примерах абсорбции (десорбции). Чаще всего общую скорость этих процессов и размеры реакторов определяют физические диффузионные стадии. Для диффузионной области кинетические уравнения в наиболее общем виде можно представить следующим образом  [c.158]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ П9 [c.119]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ 121 [c.121]

    КИНЕТИКА ФИЗИЧЕСКОЙ АБСОРБЦИИ 123 [c.123]

    При расчете кинетики процесса физической абсорбции обычно используют уравнение массопередачи  [c.53]

    Кинетика физической абсорбции. Скорость процесса абсорбции может быть рассмотрена на основе материала, изложенного в гл. 15. Применительно к абсорбции уравнение массопередачи (15.36), если движущую силу выразить в концентрациях газовой фазы, принимает следующий вид  [c.51]


    Для ускорения процессов абсорбции в химической технологии часто используют абсорбенты в виде растворов различных веществ, вступающих в химическую реакцию с абсорбируемыми газообразными компонентами, В этих случаях кинетика абсорбции определяется не только интенсивностью Массообмена, ио также скоростью протекания химической реакции. Ускорение абсорбции в рассматриваемом случае можно выразить либо увеличением коэффициента массоотдачи в жидкой фазе при той же движущей силе что и при физической абсорбции, либо увеличением движущей силы (Аж+ ). если сохранить коэффициент массоотдачи для процесса физической абсорбции (р ) М = = Р (Д + б), где б — приращение движущей силы процесса, [c.483]

    Часто процесс абсорбции газов сопровождается химической реакцией, когда газ или некоторые его компоненты химически реагируют с жидкостью или ее компонентами, причем реакция может быть как обратимой, так и необратимой. В практически интересных случаях обратимая реакция идет при достаточно высоких скоростях. При этом кинетика процесса лимитируется только стадией физической абсорбции и тогда достаточно исследовать случай необратимой реакции. [c.79]

    При описании кинетики абсорбции, сопровождающейся химической реакцией [30], исследуют кинетические закономерности химических реакций как в жидкой (в основном), так и в газовой фазах. При этом ускорение абсорбции за счет химической реакции в жидкой фазе учитывают либо увеличением коэффициента массоотдачи, если принимать движущую силу такой же, как при физической абсорбции, либо увеличением движущей силы, если принимать коэффициент массоотдачи таким же, как при физической абсорбции. [c.71]

    В физико-химических процессах, происходящих в гетерогенной системе газ — жидкость, диффузия является физическим этапом, определяющим в большинстве случаев геометрические размеры реакторов. Реакторы для проведения процессов в системе газ — жидкость конструируются, главным образом, по принципу абсорбционных аппаратов, имеют большой объем, но относительно просты и легки в эксплуатации. Промышленные реакторы для систем газ — жидкость являются реакторами непрерывного действия реже используются реакторы полупериодического действия, имеющие непрерывное питание газом. При изучении процессов абсорбции, сопровождающихся химической реакцией (хемосорбция), необходимо одновременно рассматривать уравнения диффузии и химической кинетики, так как общая скорость процесса определяется скоростью перемещения реагентов к месту реакции и скоростью химической реакции. [c.137]

    Кинетика физической абсорбции изучена относительно хорошо. Во многих случаях, особенно при больших концентрациях извлекаемого компонента, скорость абсорбции лимитируется скоростью диффузии в жидкой фазе. При тонкой очистке, т. е. когда концентрация примеси мала, независимо от механизма абсорбции скорость ее лимитируется диффузией примеси в газовой фазе. В любом случае массообменная аппаратура процессов физической абсорбции, так же как и процессов хемосорбции, в которых скорость химической реакции велика, относительно легко поддается интенсификации. На выходе газа и жидкости из абсорберов и десорберов степень приближения к равновесию, как правило, достигает 70—80%. [c.31]

    Водная очистка является наиболее старым методом удаления двуокиси углерода, поэтому до настоящего времени в промышленности эксплуатируется большое количество этих установок. Водная очистка представляет собой типичный процесс физической абсорбции. Многие технологические приемы, закономерности кинетики процесса и его аппаратурное оформление характерны и для других более современных абсорбционных методов очистки. [c.63]

    При исследовании механизма абсорбции в любых газожидкостных системах наибольшую трудность вызывает расшифровка кинетики абсорбции, в частности достаточно адекватный учет диффузии вещества в газовой и жидкой фазах. Задача заключается в таком моделировании диффузионных процессов, протекающих как внутри фаз, так и на границе раздела, которое бы позволило достаточно полно отразить факторы, влияющие на массоотдачу. Известные модели переноса вещества (модели Уитмена — Льюиса, Хигби, Данквертса и др. [6, 28, 29]) не только труднореализуемы в связи со сложными решениями математических уравнений, но и не учитывают многие из этих факторов. На кинетику абсорбции влияют коэффициент диффузии, физические свойства газов и жидкостей, термодинамические параметры процесса, концентрация компонентов, направление массопередачи, вибрация и пульсация, эффект Марангони и т. д. Многочисленные исследования влияния этих [c.69]

    Кинетика физической абсорбции [c.69]

    Гильденблат И. А.. Родионов А. И.. Демченко Б. И., в сб. Тепло- и массоперенос . т. 4., Минск. 1972, стр. 310. Исследование влияния физических свойств на кинетику массоотдачи в жидкой фазе при абсорбции газов. [c.269]


    У-9-5. Критерий мгиовеииости реакции. Все реакции протекают с конечными скоростями, и понятие мгновенной реакции является идеализированным. Поэтому требуется какой-то общий критерий для оценки того, может ли данная реакция считаться мгновенной. Вообще говоря, мгновенности протекания реакции способствуют высокая удельная скорость реакции растворенного газа и низкое значение коэффициента массоотдачи для физической абсорбции. В таких условиях скорость процесса полностью лимитируется диффузией реагентов, а скорость реакции достаточна для поддержания равновесия во всех точках раствора кинетика реакции при этом не играет существенной роли. [c.135]

    Водная очистка представляет собой типичный процесс физической абсорбции. Многие технологические приемы, закономерности кинетики этого процесса и его аппаратурное оформление характерны и для других, более современных абсорбционных методов очистки, например пропилепкарбонатной. [c.114]

    Основные научные исследования связаны с разделением смесей. Изучил гидродинамику и массообмен при двухфазном пленочном течении. Впервые показал, что перенос компонента из жидкости в пар при ректификации происходит не только вследствие диффузии, но и вследствие процессов испарения и конденсации, обусловленных теплообменом между фазами. Предложил методы расчета кинетики ректификации и пленочной физической абсорбции при различных режимах течения фаз. Изучнл кинетику и механизм молекулярной дистилляции и кристаллизации бинарных смесей из расплава. Разработал новые методы разделения смесей, методы скоростного массообмена при восходящем течении жидкости и газа и метод многоступенчатой противоточной сублимации. Для ряда процессов разделения предлолсил конструкции аппаратов. Г7] осударственная премия СССР [c.320]

    В главе 1 рассмотрено движение однородных потоков, основывающееся главным образом на законах классической механики жидкостей, в главе II — движение неоднородных потоков, причем особое внимание уделяется новейшим экспериментальным данным. Глава III посвящена процессам, основанным на законах классической термодинамики, в частности связанным с понятием необратимости. В главе IV изложены законы теплопередачи. В главе V описаны процессы, в основе которых лежат законы межфазного многокомпонентного равновесия, т. е. законы физической химии, в главе VI — многоступенчатые процессы (ректификация, абсорбция, жидкостная экстракция), объединяемые общим расчетным методом. Процессы, сущностью которых является кинетика массопередачи, рассмотрены в главе VII, процессы одновременной тепло-и массопередачи, которые имеют место при сушке газов и твердых тел, — в главе VIII. Глава IX посвящена техническим проблемам химических реакторов. [c.8]


Смотреть страницы где упоминается термин Физическая абсорбция кинетика: [c.115]    [c.117]    [c.280]    [c.68]   
Абсорбция газов (1966) -- [ c.85 ]

Абсорбция газов (1976) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

КИНЕТИКА АБСОРБЦИИ Кинетика физической абсорбции

Кинетика абсорбции

Кинетика физической

Физическая абсорбция



© 2025 chem21.info Реклама на сайте