Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика классическая

    Статистическая механика представляет собой столь необходимый мост между микроскопической механикой (классической и квантовой) и макроскопической термодинамикой. Классические аспекты этой науки были развиты в конце XIX в. Больцманом в Германии, Максвеллом в Англии и Гиббсом в Соединенных Штатах. Для простых систем типа идеальных газов расчеты не слишком сложны, и значения получаемых таким путем термодинамических величин часто более точны, чем непосредственно измеренные. Для более сложных систем, особенно таких, которые включают сильные взаимодействия между молекулами, теория гораздо сложнее и представляет собой предмет современных исследований. [c.519]


    Возможность диспропорционирования связана, во-первых, с неравновесными состояниями, о которых термодинамика (классическая) почти ничего не говорит, а, во-вторых, с определением величин тех малых областей, в которых еще имеют смысл понятия температура, энтропия и т. п. И на этот счет ничего убедительного из термодинамики извлечь нельзя. Причина заключается в том, что молекулы в расчет не принимаются, и поэтому приходится считать, что начала термодинамики верны для любой области, как бы мала она ни была. Но учет фактической дискретности системы — существования атомов и молекул — приводит к заключению о статистической природе второго начала и тогда проблема минимальной области, ведущей себя термодинамически, так же, как и заведомо большая область системы, приобретает смысл. [c.16]

    В случае необратимых процессов тем не менее возникает важное различие между заключениями классической термодинамики и релятивистской термодинамики. Классическая термодинамика неизбежно ведет к заключению, что окончательным результатом необратимых процессов, по необходимости, окажется состояние с максимальной энтропией и что дальнейшие термодинамические изменения окажутся невозможными. Релятивистская термодинамика предвидит возможность протекания необратимых процессов без достижения когда-либо непреодолимого максимального значения энтропии. [c.419]

    До недавнего времени термодинамика (классическая термодинамика) ограничивалась количественным учетом только равновесных состояний макроскопических тел и лишь качественно учитывала неравновесные состояния последних. Вследствие этого она позволяла предвидеть величину и направление изменения состояния избранного макроскопического тела при его взаимодействиях с окружающими телами, но не позволяла предвидеть скорость [c.6]

    Приведем пример одного из важных дополнений. В 1923 г. американский химик Джильберт Ньютон Льюис (1875—1946) в классической книге по термодинамике ввел понятие активность. Активность вещества не то же самое, что его концентрация, но связана с ней. Уравнения химической термодинамики можно сделать более точными в более широких пределах, если заменить концентрацию на активность. [c.114]

    Более правильно величину К называть константой равновесия, так как в курсах классической термодинамики и в ее подразделах (например, термохимии) она так и именуется [21—24, 28, 30, 35, 36, 39, 50, 51, 53, 58, 60, 67, 68, 71, 74, 89]. Поэтому в дальнейшем под величиной К мы будем подразумевать значение константы равновесия и обозначать ее через Кр. [c.90]


    В гл. 3 мы ссылались на следующий важный факт в изолированной системе при свободном протекании изменения системы энтропия должна увеличиваться. Такое изменение называют необратимым. Причинный рост энтропии и необратимость целесообразно — как это показала, между прочим, зависимость Беккера [1] — формулировать таким образом Необратимый процесс протекает потому, что он связан с увеличением энтропии . Эта формулировка оказывается весьма плодотворной, так как является исходным положением термодинамики необратимых процессов и открывает возможности рассмотрения процессов, не включаемых обычно в область так называемой классической термодинамики .  [c.56]

    В отечественной технической литературе под так называемой классической термодинамикой понимается термостатика, а под термодинамикой необратимых процессов — их кинетика, т. е. учение о скоростях протекания процессов. — Прим. ред. [c.56]

    Предмет термодинамики, очерченный выше, определяет метод и границы этой науки. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, так как для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, так называемые макроскопические системы, причем термодинамика в ее классическом виде не принимает во внимание поведение н свойства отдельных молекул. [c.26]

    При всем различии методов термодинамики и статистической физики между этими разделами теоретической физики нет и не может быть непереходимой границы, так как измеримые свойства макроскопических систем и термодинамическое состояние этих систем закономерно связаны со свойствами отдельных молекул. Основные законы термодинамики, вытекающие нз опыта и обобщающие опыт, связываются со свойствами молекул методами статистической физики, соответствующий раздел которой называется статистической термодинамикой. В отличие от этой дисциплины термодинамика, построенная дедуктивно, исходя из основных законов термодинамики, которые рассматриваются как обобщение опыта, называется часто классической или феноменологической термодинамикой. В своих конкретных результатах эти два направления, естественно, согласуются. [c.28]

    Однако в пользу классического пути построения второго начала говорят следующие соображения. Метод и границы термодинамики приводят к неизбежности концентрировать внимание на взаимных превращениях теплоты и работы, как макроскопических форм передачи энергии. Сама математическая формулировка первого закона термодинамики связана с этим обстоятельством. Всякие попытки формулировать закономерность, которой следуют все наблюдаемые взаимные превращения теплоты и работы, естественно приводят к формулировкам Клаузиуса, В. Томсона или Планка. Ограничения возможности превращения теплоты в работу приводят к общим критериям направления процесса и условиям равновесия. [c.109]

    Возможно, конечно, и такие попытки делались, построить иные, отличные от классической системы выводы и доказательства, исходящие из иначе сформулированного исходного постулата (или аксиомы) и на всех стадиях дающие совершенно общие положения, применимые для всех систем и процессов. Таким образом возникла проблема аксиоматики второго закона термодинамики. [c.109]

    Преимущество методов статистической термодинамики перед методами классической термодинамики заключается в том, что молекулярно-статистическим методом можно макроскопические свойства системы (константы равновесия, тепловые эффекты, теплоемкости и т. п.) связать со свойствами образующих систему частиц (молекул, атомов, ионов)—с их строением, потенциальной энергией и характером их движения. Так, зная зависимость потенциальной энергии молекулы адсорбата от координат, можно с помощью молекулярно-статистической теории вычислить термодинамические свойства. [c.507]

    Каким образом, согласно представлениям классической термодинамики, энтропия связана с теплотой и температурой Как зависит соотношение между ними от того, проводится ли процесс обратимым или необратимым способом  [c.84]

    Следующие пять глав образуют третью часть курса - изучение классической термодинамики и равновесия. Некоторые вопросы этой темы затрагивались уже раньше-в разд. 2-6 и в гл. 4, и студентам нужно напомнить [c.577]

    В соответствии с воззрением классической термодинамики и статистической физики, состояние равновесия системы характеризуется набором величин Р , Р",. . ., Р (например, давление, температура, концентрация и т. п.). При этом число независимых переменных определяется правилом фаз Гиббса. При фиксированных параметрах системы состоянию равновесия соответствует определенная точка в п-мерном фазовом пространстве Гиббса. Любая другая точка этого пространства определяет неравновесное состояние системы, характеризующееся набором величин Р , Р[,. . ., Р п илп же набором векторов Р = Р — Р.  [c.16]


    Ниже при рассмотрении термодинамики конкретных реакций использованы данные как ставших классическими работ, так и новых исследований и расчетов. Рассмотрение термодинамики высокомолекулярной полимеризации объединено с анализом сходного процесса — высокомолекулярной поликонденсации. В раздел, посвященный диспропорционированию, включены данные о реакциях перераспределения водорода и углерода (диспропорционирование олефинов, коксообразование). [c.172]

    Термодинамика необратимых процессов в отличие от классической термодинамики, в которой отсутствует понятие времени и под процессами подразумевается цепочка равновесных состояний, рассматривает именно протекание явлений во времени [8]. Основы учения о переносе энергии были разработаны в магистерской диссертации Н.А.Умова в 1874 г. Уравнение Умова для объемной плотности энергии IV в дифференциальной форме имеет вид  [c.16]

    Применение методов статистической физики к решению проблем химической термодинамики привело в 20-х годах к созданию статистической термодинамики и к возможности определять значения основных термодинамических функций веществ в состоянии идеальных газов на основе данных о строении молекул и о спектрах веществ. Правда, и в настоящее время возможности этого метода практически ограничиваются лишь простыми молекулами или молекулами, для которых такие расчеты упрощаются вследствие их симметрии. Однако большое значение имела прежде всего возможность определить значения энтропии и других величин двумя независимыми методами — методами классической термодинамики на основе калориметрических определений и методами статистической термодинамики на основе данных о строении молекул и их спектрах. В большинстве случаев этими двумя методами были получены хорошо согласующиеся значения энтропии, что. явилось убедительным доказательством надежности каждого из них. Позднее были выяснены и причины наблюдаемых в известных случаях расхождений, что привело к возможности использовать эти расхождения для определения параметров, относящихся к строению молекул (энергетический барьер внутреннего вращения и другие). В дальнейшем развитие радиоспектроскопии расширило экспериментальные основы расчетов, а использование электронно-вычислительных машин облегчило проведение их. В результате методы статистической термодинамики нашли широкое применение для определения основных термодинамических функций разных веществ в газообразном состоянии при самых различных внешних условиях и значительно способствовали быстрому увеличению фонда имеющихся данных. Однако эти методы сами по себе не дают в настоящее время возможности определять тепловые [c.18]

    Краткий курс химической термодинамики вводит студентов химико-технологических специальностей в теоретическое содержание классической термодинамики, термодинамики необратимых самопроизвольных и несамопроизвольных процессов, в термодинамику координированных систем. Методы статистической термодинамики в данном курсе не рассматриваются. [c.4]

    Все указанные выше изменения в термодинамических системах в классической термодинамике изучают без определения механизма различных стадий протекающих процессов. Механизмы стадий термодинамических процессов разрабатывают в статистической физике и термодинамике. [c.8]

    Классическая термодинамика позволяет проводить расчеты для систем, находящихся в равновесном состоянии и для равновесно протекающих процессов. Последнее определяется тем, что любой реальный процесс можно свести к квазиравновесно-му, когда его состояние однозначно определяется соответствующими параметрами. Состояние системы в двух разных точках будет одним и тем же независимо от того, каким путем был осуществлен переход между ними — обратимо или необратимо. [c.9]

    Закономерности протекания химических процессов между возбужденными молекулами изучают уже в таком разделе физической химии, как химическая кинетика и катализ. В нем при изучении закономерностей химических процессов учитывают время их протекания. В классической термодинамике время как параметр протекания процесса не учитывается. Его применяют как параметр только в термодинамике необратимых процессов. [c.13]

    Понятие об энтропии и введение новой функции в термодинамику было осуществлено на основе формулировок 2-го закона термодинамики и теорем Карно и Клаузиуса. Следует указать, что в равновесно протекающих процессах невозможно отделить самопроизвольные (спонтанные) процессы от несамопроизвольных. В то же время формулировка 2-го закона термодинамики предполагает отделение этих процессов один от другого. В настоящее время для разрещения этого противоречия развивается термодинамика необратимых процессов (И. Р. Пригожин). Классическая термодинамика изучает на основе 2-го закона термодинамики только равновесные процессы и системы. [c.83]

    Обратимые (равновесные) процессы являются предельными состояниями реальных систем и это понятие является удобной абстракцией в классической термодинамике. [c.85]

    Это неравенство для изолированной системы определяет, что спонтанные процессы в них проходят только с конечной скоростью, сопровождаемые возрастанием энтропии. Равновесные процессы протекают без изменения энтропии на каждой стадии, то есть 51=5г. Для необратимых процессов по знаку изменения энтропии можно определить тип процесса и направление его протекания. Для равновесных процессов по знаку изменения энтропии также можно предсказывать направление протекания процесса при данном изменении Р, Т и V. Так, если Д5>0, то она характеризует возможность самопроизвольного протекания процесса, при Д5< 0 возможно протекание процесса только при затрате работы. Последние процессы не могут быть осуществлены в изолированной системе и они не изучаются в термодинамике необратимых процессов и классической термодинамике. Возрастание энтропии Клаузиус распространил от изолированных систем на Вселенную и высказал предположение о возможной [c.96]

    Используя перечисленные методы классической термодинамики и термодинамики необратимых процессов, можно анализировать поведение и взаимодействие различных по природе потоков, устанавливать физическое содержание взаимодействия между потоками и выявлять тип коэффициентов, отражающих тип взаимодействия. На основе термодинамики необратимых процессов можно составлять математические описания процессов химической технологии. [c.257]

    Макроскопическое и микроскопическое описание состояния системы. В классической (феноменологической) термодинамике состояние системы описывается с помощью небольшого числа параметров, доступных непосредственному измерению. Для системы, находящейся при определенных внешних условиях, задаваемых координатами внешних тел и условиями теплового обмена с окружающей средой, макроскопические свойства системы приобретают значения, которые практически не меняются с течением времени. Это означает, что система находится в состоянии термодинамического равновесия . Такое равновесие называется устойчивым, если при произвольных небольших изменениях внешних условий система после устранения этих изменений возвращается в первоначальное состояние. [c.284]

    Сложнее обстоит дело у систем, которые не находятся в состоянии равновесия. Макросостояние таких систем приходится описывать параметрами, характеризующими состояние отдельных частей системы, и естественно число таких параметров будет значительно больше числа параметров, описывающих макросостояние при термодинамическом равновесии. Макроскопическое описание состояния, широко применяющееся в классической термодинамике, оставляет вне рассмотрения молекулярное строение системы. Реальное существование молекул и других частиц, из которых построены тела, делает возможным, по крайней мере принципиально, применять наряду с макроскопическим описанием состояния так называемое микроскопическое описание. Такое описание характеризует систему с помощью величин, определяющих возможно более детально состояние каждой частицы. Это описание будет различным в зависимости от того, можно ли применять к частицам системы законы классической механики или поведение частиц системы нужно рассматривать с точки зрения квантовой механики. Первые работы по статистической механике были выполнены при описании микросостояния с помощью классической механики, причем был получен ряд ценных результатов, но вскоре выяснилось, что применение последней оказывается законным только в предельных случаях. Более общие результаты, хорошо оправдывающиеся на опыте, получаются при применении квантовой механики. Статистическая физика, основанная на применении классической механики, оказывается частным случаем статистической физики, основанной на применении квантовой механики. [c.285]

    В классической термодинамике не рассматривается связь Д5°, АЛ° процессов со строением молекул реагирующих веществ. Поэтому нельзя говорить о Д /, и АЛ процесса активации, не принимая каких-либо положений о молекулярной структуре активных молекул. Обозначим термодинамические параметры процесса активации при стандартных условиях через Аб , А5 и АЛ. Выразим эмпирическую константу равновесия процесса активации К [уравнение (211.3)] через нормальное сродство АЛ. Для этого запишем стандартную константу К° этого процесса [c.567]

    Книгу Мюнстера целесообразно изучать, уже владея химической термодинамикой в объеме небольшого курса физической химии. Изучение этой книги поможет пытливому читателю, имеющему склонность к обобщенной математической трактовке явлений, глубже понять логику, математическую структуру, возможности классической термодинамики и границы ее применимости и с большей легкостью и точностью использовать этот важный и хорошо разработанный метод исследования. [c.5]

    А. КЛАССИЧЕСКАЯ ФОРМУЛИРОВКА ОСНОВНЫХ ЗАКОНОВ ТЕРМОДИНАМИКИ [c.17]

    При классической формулировке основных законов термодинамики понятия температуры и теплоты берутся из непосредственного жизненного опыта и подробно не анализируются. Возможность их измерения предполагается априори. Более подробное обсуждение понятия температуры и теплоты будет дано в разд. Б данной главы. [c.17]

    Классическая термодинамика основана на изучении таких макроскопических свойств веш,ества, как давление, температура, объем, электродвижуш ая сила. Однако любое макроскопическое состояние можно описать с точки зрения микроскопических свойств вещества такой подход характерен для статистической термодинамики. Классическая термодинамика имеет то преимущество, что не зависит от микроскопической интерпретации явлений. [c.158]

    Развиваемый здесь метод объединяет различные точки зрения уравнения баланса (как в линейной неравновесной термодинамике), классическую термодинамическую теорию устог1чивости, теорию устойчивости Ляпунова и обобщение флуктуационной формулы Эйнштейна. Это необходимо для единого описания макроскопической физики, включая и обратимые, и необратимые процессы, протекающие как вблизи, так и вдали от равновесия. Следует отметить, что еще Льюис [111] предложил объединить теорию флуктуаций и термодинамику. Однако он имел дело только с равновесными явлениями, где влияние флуктуаций пренебрежимо мало (за исключением критических явлений). [c.12]

    При таких предпосылках генетический атомизм далеко отклоняется от стереотипов атомизма в химических элементах и в атомных ядрах. Однако снаружи особенно заметно сходство генетических форм с химическими, если оценивать их лишь по составу, и это не только в прошлом, но даже теперь порой угрожает ошибочным прправнением генетического состояния к одному из молекулярных. Поэтому необходимо доказать, что возможны две формы одинакового или почти одинакового состава, из которых одна представляет очень своеобразный, но в оценке термодинамики классический уровень химии, а другая — генетическая — дискретна. [c.30]

    Заметим, что, по нашему мнению, деление термодинамики на классическую и термодинамику необратимых процессов неудачно и со временем исчезнет. Это различие еще сохраняется (на исторн-ческой основе), но рано или поздно оба метода сольются в один общий, наряду с чем останется также понятие о различии между термостатикой и термодинамикой. В дальнейшем мы будем согласовывать общие понятия с новейшей литературой [2]. [c.56]

    Специфика химической кинетики состоит в том, что элементарные процессы, лежащие в основе сдожного процесса, сопровождаются разнообразными сопутствующими явлениями (неизотермичность, неравновесность, перенос тепла и массы и т. д.), что приводит к тому, что химическая кинетика как научная дисциплина в сущности являет собой комплекс взаимосвязанных проблем на стыке термодинамики, квантовой химии (или кинетики элементарных реакций), газодинамики, статистической физики и классической механики. В связи с этим и само понятие химическая кинетика часто определяют по-разному. В самом узком смысле слова — это учение о механизме сложного процесса и его особенностях. В несколько более широком смысле — это учение об общих закономерностях любых процессов, связанных с изменением химического состава реагирующей системы независимо от причин, вызывающих это изменение,— радиоактивный распад, некоторые биологические задачи и т. д. (В атом случае для описания явлений, не связанных с изменением химиче- [c.3]

    Основы классической статистической термодинамики за.чожены Д. Гиббсом [7] и Л. Больцманом [2], что же касается квантово-механической статистической термодинамики (или квантовой статистики) как части статистиче ской физики, то начало ее развития следует связать с появлением пионерских работ Н. Бора [17] и М. Планка (13]. Н. Бор ввел понятие стационарного квантового состояния, оказавшееся исключительно плодотворным для всего дальнейшего развития как самой квантовой механики, так и статистической термодинамики. [c.25]


Смотреть страницы где упоминается термин Термодинамика классическая: [c.23]    [c.521]    [c.521]    [c.110]    [c.49]    [c.182]    [c.291]    [c.14]    [c.18]   
Понятия и основы термодинамики (1962) -- [ c.415 ]

Введение в физическую химию и кристаллохимию полупроводников Издание 2 (1973) -- [ c.229 , c.529 ]

Физическая химия для биологов (1976) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Классические



© 2025 chem21.info Реклама на сайте