Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Расстояния межатомные, изменение при резонансе

    С—С — 1,48 А [18]. Поскольку для простой связи С—С, не соседствующей с ненасыщенной группой, типичное межатомное расстояние равно 1,54 А (разд. 1.10), укорочение простой связи в бутадиене может служить доказательством резонанса. Однако подобное укорочение связи можно также объяснить изменениями в гибридизации (разд. 1.11). Предлагались и другие объяснения этого явления [19]. Энергия резонанса бутадиена, вычисленная по теплотам сгорания или гидрирования, составляет лишь около 4 ккал/моль такая величина вряд ли обусловлена только резонансом. Расчет по теплотам атомизации дает величины энергии резонанса 4,6 ккал/моль для 1,3-пента-диена и —0,2 ккал/моль для 1,4-пентадиена. Каждое из этих соединений имеет две двойные связи С = С, две простые связи С—С и восемь связей С—Н и, казалось бы, позволяет сравнить сопряженную и несопряженную системы тем не менее в строгом смысле эти соединения мало сравнимы. В цис-1,3-пентадиене имеются три связи зр -С—Н и пять связей —Н, а в 1,4-пентадиене — две и шесть соответствующих связей. Кроме того, в 1,4-диене обе простые связи С—С относятся к sp —5р -типу, а в 1,3-диене только одна такая связь, а другая связь С—С принадлежит к 5p —хр -типу. Поэтому вполне возможно, что некоторая доля и без того небольшой величины 4 ккал/моль является не энергией резонанса, а разностью энергий связей, имеющих различную гибридизацию [20]. [c.53]


    Строение озона. Тот факт, что молекула озона состоит из трех атомов кислорода, был установлен по изменению его объема при разложении (2 объема О3 дают 3 объема Ог) и по плотности газообразного озона. Строение молекулы озона было определено на основании межатомных расстояний, измеренных с помощью метода дифракции электронов. Этим методом было установлено, что молекула озона имеет форму равнобедренного треугольника с основанием 2,26 А и боковыми сторонами по 1,26 А. Отсюда следует, что в молекуле имеются две ковалентные связи (длиной по 1,26 А), образующие друг с другом угол 127°. То, что две ковалентные связи одинаковы, доказывает наличие сопряжения (резонанса, стр. 98). Между тремя атомами молекулы возможны два расположения электронов, как показывают приведенные ниже формулы. Однако ни одна из этих формул не представляет точного расположения электронов в реальных молекулах оно является промежуточным между двумя предельными состояниями  [c.324]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]


    Некоторые вопросы теории обмена электронной энергией между атомами в условиях, близких к резонансу, рассмотрены в работах [137, 138]. Для оптически разрешенных переходов с малым изменением внутренней энергии резонансное взаимодействие при больших межатомных расстояниях приводит к большим поперечным сечениям обмена вплоть до 5- 10 см . Теория предсказывает резкое уменьшение поперечного сечения при увеличении разницы энергий. Если переходы в атомах обусловлены квадруполь-квадрунольным взаимодействием, то поперечное сечение при Л = 0 уменьшается до 10 см и становится примерно равным газокинетическому. Поперечное сечение обмена электронной энергией становится меньше газокинетического при условии (/1 А I//ги) > 1, где V — относительная скорость, /—характеристическая длина потенциала взаимодействия, АЕ — изменение внутренней энергии. Левая часть неравенства представляет собой отношение продолжительности столкновения (//и) к характеристическому времени движения электронов Н1 АЕ ) и является обобщенным вариантом условия Ландау— Теллера. При умеренно высоких температурах средняя тепловая скорость составляет приблизительно 5- 10 см/с и для /=10 см отношение становится равным единице при Д =133 см . Поэтому, если Д > 200 см , вероятность обмена электронной энергией в расчете на одно столкновение намного меньше единицы. Такой же качественный вывод вытекает из уравнения (4.14). Количественные измерения поперечных сечений обмена в условиях, близких к резонансу, в ряде случаев удовлетворительно согласуются с теорией, и, кроме того, как видно из рис. 4.26, в предельном случае Д = 0 сечение действительно близко к 5 10 см2. [c.297]


Смотреть страницы где упоминается термин Расстояния межатомные, изменение при резонансе: [c.390]    [c.176]   
Принципы органического синтеза (1962) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Расстояние

Расстояние межатомное



© 2025 chem21.info Реклама на сайте