Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лазерная спектроскопия

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]


    Спектроскопические методы являются наиболее надежными. Они основаны на взаимодействии легких частиц (фотонов и электронов) с молекулярными системами. Молекулярная спектроскопия разделяется на спектральные области в зависимости от энергии используемых легких частиц. Химия оперирует в основном колебаниями атомов и валентных электронов. Этому типу движений в молекулярных системах соответствуют фотоны оптического диапазона энергий (инфракрасная, видимая и ультрафиолетовая области электромагнитного излучения). Этот диапазон электромагнитного поля называют оптическим или просто светом. Именно в оптической спектроскопии были достигнуты наиболее значительные успехи, связанные с использованием лазеров. Поэтому обсудим в основном методы оптической лазерной спектроскопии. [c.114]

    Коллоидная стабильность индустриальных масел с композициями присадок определялась седиментационным методом. Размеры коллоидных образований после центрифугирования измеряли с помощью метода корреляционной лазерной спектроскопии. [c.270]

    ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ, раздел оптич спектроскопии, изучающий полученные с помощью лазера спектры испускания, поглощения, рассеяния Л с позволяет исследовать в-ва на атомно-мол уровне с высокой чувствительностью, избирательностью, спектральным и временным разрешением [c.564]

    В некоторых промышленных спектрометрах КР в качестве источника света используются лазеры лазерная спектроскопия КР). [c.289]

    Лазерная спектроскопия атомов и молекул. Пер. с англ./Под ред. Г. Вальтера.—М. Мир, 1979. [c.66]

    В настоящее время исследования элементарных процессов в статическом реакторе получили широкое распространение в связи с развитием импульсной техники по созданию и регистрации активных частиц. По мере развития чувствительности и временного разрешения методов лазерной спектроскопии увеличивались возможности исследований в статическом реакторе. Эти возможности условно проиллюстрированы в табл. 5.1. [c.108]

    Нужно, одпако, сказать, что потери при отражении света от зеркал приводят к ограпичсиию длины оптического пути. Этот недостаток отсутствует в методе внутрирезонаторной лазерной спектроскопии, в котором исследуемое вещество помещается внутри резонатора лазера с широким контуром генерации (например, лазеры на oj)raHH4e KHX красителях). [c.26]

    Лазерная спектроскопия комбинационного рассеяния Спектроскопия протяженной тонкой структуры рентгеновского поглощения (ИТСРИ) [c.12]

    Различная степень взаимодействия присадок, приводящая в отдельных случаях к осаждению из растворов, подтверждена с помощью метода лазерной спектроскопии. Как видно из рис. 9.8, различные композиции присадок отличаются размерами коллоидных образований в масляных композициях. Знание размеров этих образований позволяет определить пути повыше шя коллоидной стабильности растворов присадок, Так, например, для повышения коллоидной стабильности присадки АБЭС, входящей в состав масла ИГС ,-38д, важно учитывать ее взаимодействие с ингибиторами коррозии. Можно предположить, что замена В-15/41 на присадку А (размеры коллоидных образований в системах 1,58 и 0,53 мкм, соответственно, рис. 9.8) повысит коллоидную стабильность раствора присадки АБЭС. Механизм действия присадки А, по-видимому, заключается в диспергировании нерастворимых ассоциатов на мельчайшие частицы, за счет чего предотвращается их коагуляция и выпадение в осадок. Более того, можно предположить, что присадка А одновременно препятствует превращению растворимых в масле продуктов окисления в нерастворимые вещества и их седиментации. Образующиеся при этом коллоидные частицы удерживаются во взвешенном состоянии в масле за счет солюбилизации. Таким образом, очевидно, присадка А обладает некоторой антиокислительной функцией. [c.274]


    Лазеры могут также использоваться для возбуждения в исследованиях комбинационного рассеяния света. Лазерная спектроскопия комбинационного рассеяния (КР) нашла ряд приложений в исследовании промежуточных продуктов фотохимических реакций. Высокая интенсивность и монохроматичность лазерного излучения обеспечивает методу КР чувствительность, которая недоступна с традиционными световыми источниками. Кроме того, появляется возможность изучения промежуточных соединений с временным разрешением. С перестраиваемыми лазерами становится возможной резонансная лазерная спектроскопия (РЛС). Когда длина волны излучения, возбуждающего комбинационное рассеяние, подходит к сильной полосе поглощения исследуемого образца, интенсивность КР увеличивается на шесть порядков по сравнению с обычным, нерезонансным возбуждением. Одним особенно важным вариантом лазерной спектроскопии КР является когерентная антистоксова спектроскопия комбинационного рассеяния (КАСКР), которая зависит от нелинейных свойств системы в присутствии интенсивного излучения и включает смешение нескольких волн. Высокая чувствительность получается вследствие того, что регистрация проводится скорее по люминесцентной, чем по абсорбционной методике. Паразитное рассеяние возбуждающего света ограничивает чувствительность традиционных исследований КР, но в экспериментах по КАСКР вблизи длины волны испускаемого излучения нет возбуждающего излучения, поэтому рассеянное возбуждающее лазерное излучение может быть отфильтровано. [c.197]

    ВНУТРИКОМПЛЕКСНЫЕ СОЕДИНЕНИЯ см Хелаты. ВНУТРИРЕЗОНАТОРНАЯ ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ вид лазерной спектроскопии, в к-рой исследуемое в-во в любом агрегатном состоянии помещают между зеркалами резонатора лазера на пути лазерного излучения, как показано на рисунке. Лазерное излучение, отражаясь от зеркал резонатора, многократно проходит через образец. При этом потери энергии излучения внутри резонатора вследствие рассеяния на зеркалах, отражения на окош1(ах кювет (в случае жидкостей или газов), дифракщш и др. причин компенсируются благодаря усилению излучения активной средой лазера. [c.393]

    Революционизирующее влияние оказало применение Л в разл областях науки На принципиально новую основу поставлена спектроскопия (см Лазерная спектроскопия), появились новые области на>ки и техники нелинейная оптика, оптоэлектроника, интегральная оптика Разрабатываются С[шсобы изотопов разделения с использованием Л на красителях, Нг-СОг-Л и ряда других, системы для проведения экспериментов по пазерному термоядерному синтезу (ЛТС) [c.564]

    В спектроскопических методах результат взаимодействия света с молекулярными системами регистрируется как функция отклика. Она отражает либо изменение какого-нибудь параметра воздействующей световой волны (амплитуды, частоты и направления волны, фазовых характеристик, поляризации, скорости распространения и т. д.), либо появление нового качества (например, генерацию второй гармоники излучения). Зависимость функции отклика от интенсивности световой волны определяет деление на линейную (линейная зависимость) и нелинейную (нелинейная зависимость) спектроскопии. В этой книге излагаются методы как линейной лазерной спектроскопии (абсорбционная и флуоресцентная спектроскопия комбинационное рассеяние), так и некоторые методы нелинейной оптической спектроскопии (двухфотонное поглощение, нелинейное рассеяние). Отдельно будут изложены методы фемтосекундной спектроскопии. [c.114]

    С помощью импульсов направленного лазерного излучения можно исследовать спектры флуоресценции и рассеяния в удаленной области, напр, в верх, атмосфере, и получать информацию о ее составе. Этот принцип используется в методах дистанц. лазерной спектроскопии, разрабатываемых для контроля окружающей среды. [c.565]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]


    О деталях электронного строения М, уникальную информацию дают фото- и рентгеноэлектронные спектры, а также оже-спектры, позволяющие оценить тип симметрии мол, орбиталей и особенности распределения электронной плотности, определяемые отдельными орбиталями, перераспределение электронной плотности при введении заместителей, изменение эффективных зарядов атомов и т.п. Широкие возможности для изучетшя отдельных состояний М. открыла лазерная спектроскопия (в разл, диапазонах частот), отличающаяся исключительно высокой селективностью возбуждения. Импульсная лазерная спектроскопия позволяет анализировать строение короткоживущих М, и их превращения в электромагн. поле (см. Многофотонные процессы). [c.109]

    Для обнаружения в механизме р-ции О. п. используют радиоспектроскогшч. методы (ЭПР, хим. поляризацию ядер), оптич. методы с быстрой регистрацией (напр., пико-секундную лазерную спектроскопию). Косвенным подтверждением О. п. служат изменение спектральных характеристик р-ра, в частности появление полосы переноса заряда (см. Молекулярные комплексы), и хемилюминесценция. Для идентификации р-ций, включающих О. п., используют также их ингибирование при введении посторонних радикалов, доноров или акцепторов электрона, либо инициирование полимеризации добавленного в реакц. среду мономера (напр., акрилонитрила). Большинство этих методов основано на фиксации ион-радикалов, к-рые образуются при О. п. в клетке р-рителя (см. Клетки эффект) и затем выходят в объем р-ра. Известны р-ции О. п., идуидае неявно , без выхода ион-радикалов из клетки р-рителя. Такие процессы распознают с помощью косвенных методов, характерных для химии радикалов свободных. [c.331]

    По диапазону длин волн (или частот) электромагн. излучения выделяют радиоспектроскопию, микроволновую спектроскопию, оптическую С. (см. Инфракрасная спектроскопия. Молекулярная оптическая спектроскопия. Ультрафиолетовая спектроскопия), рентгеновскую спектроскопию и гамма-спектроскопию (см. Мёссбауэровская спектроскопия. Гамма-абсорбционный аиализ). Оптическую С. на практике иногда отождествляют со спектрофотометрией. В каждом разделе С. используются свои приборы для получения, регистрации и измерения спектров. В соответствии с различием конкретных эксперим. методов выделяют спец. разделы С., напр. Фурье-спектроскопия, лазерная спектроскопия. [c.394]

    Для изучения мол. динамики используют физ. явления рэлеевское и комбинационное рассеяние света (см. Комбинационного рассеяния спектроскопия), акустич. и мат. релаксацию (см. Акустическая спектроскопия), радиоспектроскопию, аннигиляцию позитрония (см. Мезонная химия), рассеяние нейтронов (см. Нейтронография). Разработаны спец. методы пикосекундная и фемтосекундная оптич. спектроскопия, включая лазерную динамич. голографию с временами разрешения до 10 " - 10 с (см. Лазерная спектроскопия), а также методы мат. моделирования (см. Молекулярная динамика, Молекулярная механика). [c.242]

    Э. с. многоатомных молекул обычно получают апя конденсир. фазы (жидкие и твердые р-ры, кристаллы). Эги спектры, как правило, имеют вид широких бесструктурных или слабо структурированных полос. Лишь при низких т-рах (обычно 77 К, 20 К или 4,2 К) в матрицах из замороженных к-парафинов (матрицы Шпольского) полосы распадаются на большое число линий или узких полос (квазилиний), отражающих колебат. структуру каждого из электронных переходов. В отличие от обычных широкополосных Э. с. такие квазилинейчатые Э. с. являются для молекул характеристичными. Для молекул в др. средах при низких т-рах удается получить тонкострукгурный спектр флуоресценции, если возбуждать молекулы лазером с длиной волны возбуждения, приходящейся на область чисто электронного перехода (см. Лазерная спектроскопия). [c.446]

    Определение вторичной структуры белков возможно также с помощью лазерной спектроскопии комбинащюнного рассеяния [153]. Устанонление вторичной структуры глобулярных белков с помощью ЭВМ открывает дальнейшие интересные возможности [154]. [c.377]

    Какие научные дисциплины являются пофаничными для химической кинетики Прежде всего синтетическая химия, располагающая офомным фактическим материалом по химическим реакциям, а именно знанием, какие реагенты в каких условиях превращаются в те или иные продукты. Строение вещества дает необходимые сведения о строении частиц, межатомных расстояниях, дипольных моментах и др. Эти данные необходимы для построения предполагаемых механизмов превращения. Химическая термодинамика позволяет рассчитывать термодинамические характеристики химического процесса. У математики и1нетика заимствует математический аппарат, нужный для описания процесса, анализа механизма, построения корреляций. На данные молекулярной физики кинетика опирается, когда анали-з 1руется процесс в зависимости от фазового состояния системы, где протекает реакция. Спектроскопия и хроматофафия вооружают кинетику методами контроля за протеканием процесса. Лазерная спектроскопия служит основой для создания уникальных методов изучения возбужденных состояний молекул и радикалов. [c.17]


Библиография для Лазерная спектроскопия: [c.301]   
Смотреть страницы где упоминается термин Лазерная спектроскопия: [c.273]    [c.7]    [c.94]    [c.210]    [c.6]    [c.294]    [c.347]    [c.411]    [c.537]    [c.394]    [c.564]    [c.99]    [c.394]    [c.183]    [c.568]    [c.739]    [c.779]    [c.325]    [c.231]   
Смотреть главы в:

Техника и практика спектроскопии -> Лазерная спектроскопия


Химический энциклопедический словарь (1983) -- [ c.294 ]

Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.289 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.289 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.294 ]




ПОИСК







© 2025 chem21.info Реклама на сайте