Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Динамика элементарного акт

    Первая часть состоит в получении количественных характеристик отдельного элементарного акта. В общем случае это требует детального рассмотрения протекания элементарного акта, т. е. динамики элементарного акта. В ходе элементарного акта химического превращения система атомов должна преодолеть энергетический барьер. Способной к превращению, активной, является система, полная энергия которой достаточна для преодоления барьера. В мономолекулярных реакциях активная система образуется в момент получения превращающейся частицей необходимой энергии. Эта энергия в отсутствие специальных физических воздействий получается за счет обмена энергией с другими частицами реакционной смеси при соударениях. В бимолекулярных реакциях активная система образуется при соударении взаимодействующих частиц. Однако образование активной системы не означает, что неизбежно произойдет химическое превращение. Существуют конкурирующие процессы, в результате которых активная система атомов возвращается в исходное состояние — дезактивируется при соударении с какой-либо частицей реакционной смеси в случае мономолекулярной реакции или распадается на исходные частицы в случае бимолекулярной. В результате имеется некоторая, меньшая единицы, вероятность превращения активной системы в продукты реакции. Эта вероятность и является главной количественной характеристикой элементарного акта, и определение ее является основной задачей динамики элементарного акта. [c.87]


    Бимолекулярные реакции, так же как и другие типы элементар-ных реакций, могут быть рассмотрены методом активированного комплекса. Однако еще до появления метода активированного комплекса была создана и нашла широкое применение при рассмотрении бимолекулярных реакций так называемая теория соударений. Будучи менее строгой, эта теория тем не менее не потеряла своего значения и до сегодняшнего дня благодаря наглядности представлений и простоте используемого математического аппарата. Общая методология этого подхода используется в современных теориях бимолекулярных реакций, основанных на рассмотрении динамики элементарного акта. [c.102]

    И последнее. Изотопный эффект уже очень давно применяется для анализа механизма реакций и молекулярной динамики элементарного акта. Но при этом не учитывалась возможность магнитного изотопного эффекта. Например, при замещении Н -> В одновременно могут проявляться обычный (массовый) изотопный эффект и магнитный изотопный эффект. Не исключено, что учет МИЭ может привести к ревизии ранее предложенных механизмов некоторых реакций. [c.58]

    В момент времени tg молекулярная система находится в стационарном невозмущенном состоянии с волновой ф-цией ф и подвергается внеш. воздействию. Требуется определить вероятность найти систему в другом стационарном состоянии с волновой ф-цией <р после прекращения воздействия в момент времени (Х , (задача о вероятности перехода). Эта задача-частный случай задачи об эволюции, однако ее выделяют особо, поскольку оиа играет важную роль в изучении динамики элементарного акта хим. р-ции и в теории молекулярных спектров. В частности, решение этой задачи приводит к правилам отбора для квантовых переходов. [c.412]

    Концепция К. р. не может быть универсальной и применимой к любым хим. процессам. Так, в системах с очень большой кривизной пути р-ции описание динамики элементарного акта в естественных К. р. неудовлетворительно. Возникает возможность прямых переходов из долины реагентов в долину продуктов не вдоль собственной К. р., а вдоль поперечных координат (рис. 3,о), к-рые невозможно учесть в гамильтониане пути р-ции. Они имеют место, напр., при туннельных р-циях обмена легкого атома типа + Л2Н (см. Туннельный эффект в химии). [c.463]

    Химическая динамика - приоритетное направление в X. ф. Вьщеляют 4 группы проблем, к-рые составляют условно мол. динамику, энергетич. динамику, динамику элементарного акта хим. р-ции и спиновую динамику. [c.242]

    Это положение в последние годы резко изменилось в связи с исследованием быстрых реакций, скорости которых соизмеримы со скоростями релаксационных процессов. Обнаруженные уже сравнительно давно ограничения формальной химической кинетики, оперирующей понятиями полных концентраций реагирующих компонент газа, оказалось необходимым устранить путем перехода к более детальному описанию. Это описание трактует элементарную реакцию как совокупность элементарных процессов, а простое кинетическое уравнение элементарной реакции заменяет уравнениями тина обобщенного уравнения Больцмана. Кинетическими параметрами при таком описании служат пс константы скорости, а сечения элементарных процессов другими словами, в основе этой схемы лежит динамика элементарного акта MOHO-, би- или тримолекулярного процесса. Такой подход позволяет /юстичь, ве цели. [c.3]


    Созданная Эйрингом и Поляни теория часто фигурирует в литературе как теория абсолютных скоростей реакций. В снязи с развитием в последнее премя новых методов расчета абсолютных скоростей реакций, учитывающих динамику элементарного акта, применение этого всеобт.емлющрго термина к теории переходного состояния едва ли оправдано. [c.88]

    На совр. этапе в К. х. наряду с традиц. расчетами эле -троиных волновых ф-ций разрабатываются новые проблемы и методы. Развивается квантовая теория движения ядер в хим. системах (см. Динамика элементарного акта. Электронно-колебательное взаимодействие). При переходе от статнч. систем к системам, меняющимся во времени, в частности в результате хим. р-ций, фото возбуждения и распа,гц1, потребовались новые теоретич. методы, разработанные в квантовой механике и статистич. физике, так что К, х.. можно с полным основанием рассматривать как ветвь теор. физики. Становятся все более разнообразными объекты приложения К. х. от элементарных процессов в хим. лазерах и электрической проводимости мол. кристаллов до-сложных механизмов функционирования биологических систем. [c.251]

    ПЛАЗМОХИМИЯ, изучает хим. процессы в низкотемпературной плазме (пла.чмохимические реакции) и влияние этих процессов па св-ва плазмы. В П. рассматривается термодинамика пла 1мы, физика атомных и мол. столкновений, газодинамика перемещивающихся потоков с относительно большими конц. реакционноспособных частиц и др. П. связана с неравновесной хим. кинетикой (см. Ра/топесные и неравновесные реакции) и использует теор. и эксперим. методы изучения динамики элементарного акта реакции. Полученные данные позволяют определить изменение распределения частиц реагирующей системы по энергетич. квантовым состояниям в ходе р-ции и рассчитывать скорости р-ций. [c.446]

    А. п. лежит в основе практически всех представлений совр. теоретич. химии о строении молекул, хим. связи, реакц. способности, динамике элементарного акта хим. р-ции, природе фотохим. процессов. В рамках А. п. сформированы осн. понятия и методы интерпретации экспери.м. данных в молекулярной спектроскопии, электронографии, рентгенографии и др. областях структурной химии. [c.35]

    Последоват. неформальное рассмотрение всех указанных эффектов возможно лишь в рамках динамич. расчета (см. Динамика элементарного акта). Предпринимались попытки учесть их по отдельности. Напр., был предложен метод си-стематич. уточнения конфигурации АК, поскольку выбор в кач-ве таковой именно седловой точки основан на интуитивных представлениях и, вообше говоря, не обязателен. Могут существовать и др конфигурации, для к-рых погрешность вычислений по ф-лам (2) и (3 обусловленная возвращением системы в область реагентов после прохождения этих конфигураций, меньше, чем для конфигурации седловой точки. Используя формулировку А. к. т. в терминах теории столкновений (см. выше), можно утверждать, что обратному потоку (от продуктов к реагентам) через критич. пов-сть соответствует порождающая его и равная ему часть полного прямого потока (от реагентов к продуктам). Чем меньше эта часть, тем точнее вычисление скорости р-ции по А. к. т. Эти соображения легли в основу т. наз. вариационного определения АК, согласно к-рому критической считается пов-сть, минимизирующая прямой поток. Для нее скорость р-ции, вычисляемая по ур-ниям (2) и (3), минимальна. Как правило, нулевые энергии поперечных колебаний изменяются вдоль координаты р-ции. Это еще одна причина смещения конфигурации АК из седловой точки ППЭ она также учитывается вариационной теорией. [c.75]

    Характеристика такого парного столкновения-т, наз. интегральное сечение р-ции По физ. смыслу эта величина соответствует площади мишени, центр к-рой совпадает с центром масс одной из реагирующих молекул, если при попадании в эту мишень второй молекулы происходит процесс (4). Произведение скорости относит, движения сталкивающихся частиц на интегральное сечение. р-ции равно потоку. молекул, к-рые в случае попадания в мишень прореагировали или изменили свое квантовое состояние, т. е. равно скорости процесса (4). Теоретич. расчет или его эксперим. определение-осн. задача динамики элементарного акта р-ции. [c.286]

    Возбужденные состояния молекул. Колебат. и вращат. B. . играют чрезвычайно важную роль в термич. хим. рь циях (см. Динамика элементарного акта р-ции) ииформа- [c.408]

    В момент времени t возмущение отсутствует, система находится в состоянии с волновой ф-цией (/о. Требуется описать поведение системы при наличии возмущения в момент времени t > (задача об эволюции). Знание решения этой задачи требуется при анализе взаимод. молекул с излучением, при изучении динамики элементарного акта хим. р-ций оно используется в теории дифракц. методов исследования строения молекул. [c.412]

    ДИНАМИКА ЭЛЕМЕНТАРНОГО АКТА хим реакции, изучает превращение отдельной молекулы или комплекса взаимодействующих молекул из заданного начального квантового состояния I в определенное конечное состояние / (от англ mitial и final соотв) Для процессов в газовой фазе элементарные акты-гл обр столкновения молекул, сопровождающиеся передачей энергии, мономолекулярными превращениями или бимолекулярными р циями, в конденсир средах (жидкостях н твердых телах) элементарные акты взаимод частиц рассматриваются с учетом взаимод системы с окружающей средой Теоретич исследование элементарных актов основано на изучении методами классич или квантовой механики особенностей движения (динамики) электронов и атомных ядер, составляющих систему частиц, к-рые участвуют в элементарном акте (одна молекула в случае мономолекулярных превращений, две-при бимолекулярных р-циях, три-при тримолекулярных) [c.66]


    Изучение химии и физики плазмы, развитие лазерной техники, анализ процессов в атмосфере и космосе потребовали создания новых теоретич. методов, позволяющих исследовать эволюцию мол. систем ва основе временного ур-ния Шрёдингера. Эти методы применяются, напр., при исследовании упругих столкновений атомов, ионов и молекул, развития мол. систем после импульсного их возбуждения лазерным излучением, при анализе динамики элементарного акта хим. р-ций, прежде всего газофазных. [c.367]

    КИНЕТИКА ХИМИЧЕСКАЯ (от греч bnetikos-движущий), раздел физ химии, изучающий хим р-цию как процесс, протекающий во времени, механизм этого процесса, его зависимость от условий осуществления К х устанавливает временные закономерности протекания хим р-ций, связь между скоростью р-цин и условиями ее проведения, выявляет факторы, влияющие на скорость и направление хим р-ций Изучить механизм сложною хим процесса - означает выясш1ть, из каких элементарных стадий он состоит и каким образом элементарные стадии связаны друг с другом, какие образуются промежут продукты и т п Теоретич К х занимается построением мат моделей сложных хим процессов, анализом этих моделей в сопоставлении с эксперим данными Важной задачей К х является изучение элементарных р-ций с участием активных частиц своб атомов и радикалов, ионов н ион радикалов, возбужденных молекул и др Используя результаты кинетич исследований и изучения строения молекул и хим связи, К х устанавливает связь между строением молекул реагентов и их реакц способностью Динамика элементарного акта изучает теоретич и эксперимент методами элементарный акт чим р-ции и предшествующие ему механизмы возбуждения реагирующих частиц Кинетич исследования входят как важная составная часть во многие самостоят разделы химии, такне, как катализ, фотохимия, плазмохимия, радиационная химия, электрохимия и др. В своих методах исследования и теоретич обобщениях К х использует достижения математики, кибернетики, атомной и мол физики, квантовой химии, спектроскопии, аналит химии Кинетич данные и теоретич. концепции К х используются при создании экологич моделей атмосферы и гидросферы, при анализе процессов, происходящих в космосе [c.381]

    Для современной К. х. характерно широкое использование разнообразных методов изучения быстропротекающих хим. процессов, автоматизация эксперимента, использование ЭВМ для обработки эксперим. данных. Кинетич. информация собирается, хранится и используется через банки кинетич. констант. Интенсивно развивается динамика элементарного акта как теоретич. направление К. х. и (с применением ЭВМ) новый эксперим. метод. В неравновесной химической кинетике изучаются процессы передачи энергии и активации молекул. Важное значение приобрели лазерные методы для возбуждения молекул и для контроля за протеканием р-ции (см. Лазерная химия). Возрос интерес к изучению кинетики р-ций в экстремальных условиях, напр, при мех. разрушенши в-ва, низких т-рах (см. Механохимия, Криохимия). [c.382]

    Уточнение и развитие концепции К, р. связано с проблемами динамики элементарного акта хим. р-ции. Во-первых, описанный выше выбор кривой пути р-ции как пути кратчайшего спуска из седловой точки в долины реагентов и продуктов на ППЭ неоднозначен. Он зависит от выбора внутр. координат системы q,. Однозначный (инвариантный) выбор модифицирует определение пути р-ции таким образом, что получаемая кривая в любой системе координат представляет собой одну и ту же последовательность геом. конфигураций q = q . qj.....q системы. К. р., определенная на инвариантном пути р-ции, наз. собственной К. р. Во-вторых, вводится понятие кривизны пути р-ции К = dy/ , где i-собственная К. р., у = у( )-угол между направлением касательной к инвариантной кривой пути р-ции и нек-рым заданным фиксир. направлением (напр., осью х, рис. За). Для описания динамич. эволюции системы удобно перейти от внутр. координат q, к спец. криволинейным координатам-естеств. координатам. Одной из них является собственно К. р. S, а остальные, наз. поперечными координатами, отсчитываются вдоль нормалей к пути р-ции в каждой его точке. Поперечные координаты локально являются координатами нормальных колебаний (нормальными колебат. модами), для к-рых равновесные положения лежат на пути р-ции, а формы и частоты изменяются с [c.463]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Помимо указанных методов, для изучения строения М. привлекают масс-спектрометрию и ряд др. методов. По массам и зарядам осколочных ионов, к-рые возникают при действии на нейтральные М. электронного удара, можно представить себе, какие и в каком кол-ве нейтральные М. были в исходной системе. Анализ изотерм адсорбции позволяет судить об изменении равновесной конфигурации ядер М. при ее фиксации на пов-сти адсорбента (хромато-скопия). Полезные качеств, заключения о строении М. могут быть получены и на основе изучения специфики их поведения в хим. р-циях, в частности реакц, способности и селективности по отношению к характерному набору реагентов, а также особенностей динамики элементарного акта хим. р-щш. [c.109]

    Для вычисления траекторий частиц используют и др. УР-1ШЯ движения, в к-рых случайное действие окружающей среды на рассматрпваемую систему вводится иначе, чем в ур-нии (2). Все они являются вариантами обобщенного ур-ния Ланжевена, )"читывающего временные и пространств, корреляции случайных сил и сил треиия (т. наз. методы ланжевеновой динамики). Используя разл. упрощающие предположения, можно построить определенную иерархию приближений, к-рая позволяет рассматривать мол. систему в разных временньк масштабах (см., напр.. Динамика элементарного акта хим. р-ции). [c.111]

    Начало использования мол. пучков для изучения хим. р-ций положено работами Е. Тейлора и Ш. Датца (1955). Важнейший вклад в изучение динамики элементарного акта хим. превращения сДелан Д. Хершбахом (Нобелевская премия 1986, совместно с Ли Яном и Дж. Полани). [c.124]

    И. м. служат для рещения разл. задач и могут иметь разную форму. Напр,, для расчета дипольного момента, энергии электронного возбуждения или распределения электронной шю-гности в молекуле при равновесной конфигурации ядер достаточно решить лишь электронную задачу. Определение равновесной конфигурации ядер молекулы требует поиска минимума на поверхности потенциальной энергии (ППЭ), к-рый производят по точкам, т.е. многократно решают электронную задачу для разл. конфигураций ядер. Для изучения динамики элементарного акта хим. р-ции необходимо не только найти ППЭ, но и решить ядерное ур-ние Шрёдингера для взаимодействующих молекул. [c.238]

    Значит, место в совр. X. ф. занимает изучение структурных и спектральных характеристик высоковозбужденных частиц, что обусловлено, во-первых, разработкой новых лазерных систем и выбором частиц-эмиттеров, подходящих для генерации излучения во-еторых, созданием аналит. методов идентификации возбужденных частиц, образованных в плазме, ударных волнах, при горении, в космосе и т.д. в-третьих, необходимостью знания св-в возбужденных состояний и пов-стей их потенциальной энергии для предсказания механизма р-ций и расчета динамики элементарного акта хим. р-ции (см. ниже). [c.242]

    Теоретич. исследования хим. р-ций включают три этапа построение ППЭ, расчет динамики элементарного акта р-ции на этой ППЭ и статистич. усреднение результатов расчета. Итогом вычисления является константа скорости р-ции. Использование активированного комплекса теории позволяет перейти от первого этапа к третьему, минуя динамич. расчет. При этом определение минимумов и седловых точек ППЭ приобретает самостоят. фундам. значение, т. к. нахождение соответствующих геом. конфигураций и их энергий позволяет предсказать механизм протекания про- [c.593]

    Надежные квантовохим. расчеты ППЭ для многоатомных систем сложны и дороги. Поэтому пока распространены эмпирич. процедуры построения модельных ППЭ. Они заключаются в выборе эмпирич. ф-ции U (qD того вида, к-рый подсказан характером исследуемой р-ции. В ф-цию включаются параметры, подбираемые по эксперим. данным (спектроскопич., термохйм., кинетич.) либо оцениваемые в рамках предельно упрощенного теоретич. расчета. Так, в модельных расчетах динамики элементарного акта хим. р-ции часто используют метод Лондоиа-Эйринга-Поляни-Сато (схема ЛЭПС), а при обсуждении реакционной способности в рамках теории активир. комплекса метод порядок связи энергия связи . [c.593]

    Интенсивное развитие П.м. и неэмпирич. методов квантовой химии делает их важными средствами совр. исследования механизмов хим. превращений, динамики элементарного акта хпм. р-ции, моделирования биохим. и технол. прюцессов. При правильном использовании (с учетом принципов построения и способов калибровки параметров) П. м. позволяют получить надежную информацию о строении и св-вах молекул, их превращениях. [c.65]

    В совр. Ф. вьщеляют след, разделы Ф. малых молекул, позволяющую выяснить динамику элементарного акта в возбужденных электронных состояниях молекул орг. и неорг. Ф., изучающие фотопревращения соответствующих хим. соед. и методы фотохим. синтеза механистич. (физ.) Ф., изучающую механизмы и кинетич. закономерности фотохим. р-ций и тесно связанная с фотофизикой, хим. кинетикой, квантовой химией, теорией строения молекул и др. разделами физ. химии. [c.183]

    Динамика элементарного акта хим. р-ции-центр, часть X. ф. Здесь рассматривают принципиальные проблемы какие р-ции могут происходить, а какие запрещены, как рассчитать скорость р-ции, как управлять хим. р-циями, влияя на их скорость и направление. Исходным этапом решения этих проблем является расчет поверхности потенциальной энергии (ППЭ) (в частности, координаты реакции) и траекторий движения частиц по ППЭ из состояния исходные в-ва в состояние продукты . ППЭ можно рассчитать методами квантовой химии (см. Неэмпирические методы, Полуэмпирические методы)-, расчет траекторий движения производится по ур-ниям классич. механики (метод классич. траекторий) или с учетом квантовых состояний частиц (метод квазиклассич. траекторий). Развиваются строгие методы, основанные полностью иа квантовых представлениях. Разрабатывается также стягистич. теория хим. р-ицй, к-рая не требует для расчета скорости р-ции знания траекторий и динамики движения по ППЭ достаточно лишь знание энергетич. спектра всех частиц, движущихся по ППЭ. [c.242]


Смотреть страницы где упоминается термин Динамика элементарного акт: [c.114]    [c.11]    [c.20]    [c.173]    [c.340]    [c.350]    [c.25]    [c.366]    [c.463]    [c.124]    [c.212]    [c.216]    [c.350]    [c.438]    [c.445]    [c.624]    [c.653]    [c.757]   
Химический энциклопедический словарь (1983) -- [ c.173 ]




ПОИСК





Смотрите так же термины и статьи:

Динамика



© 2025 chem21.info Реклама на сайте