Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность, тепло стационарный режим

    Экспериментальные методы определения теплопроводности можно разделить на две большие группы К первой из них относятся методы, основанные на использовании закономерностей стационарного теплового потока, а ко второй — нестационарного. Температуропроводность непосредственно может быть определена только в нестационарных тепловых режимах, поскольку именно эти режимы она и характеризует. Сущность стационарных методов измерения теплопроводности состоит в том, что в исследуемом образце поддерживается такой тепловой режим, когда распределение температуры в образце во времени не изменяется. Измеряя тепловой поток и разность температур между определенными точками образца , можно рассчитать его теплопроводность. Теплопроводность исследуемого объекта можно определить по данным теплопроводности некоторого эталона, для которого известна температурная зависимость теплопроводности. К основным недостаткам метода относится длительность установления стационарного теплового потока, особенно для образцов с низкой теплопроводностью, какими являются полимеры. Имеются и другие экспериментальные затруднения, связанные с не-, обходимостью устранения утечек тепла, с осуществлением полного и равномерного контакта между образцом и нагревателем или эталоном и др. Конструкции приборов для определения коэффициента тенлопроводности полимеров абсолютным стационарным методом, описаны в работах относительным методом стационар- [c.190]


    Ветров и Тодес [455] развили указанную задачу в условиях нестационарного прогрева слоя и с учетом потери тепла в окружающую среду, а также теплопроводности вдоль слоя. Приближенное решение ими получено для достаточно большого промежутка времени (1- со), когда устанавливается стационарное распределение температур в слое (так называемый регулярный режим) [470]. При этом скорость продвижения в слое середины фронта тепловой волны [c.437]

    Влияние теплопроводности на устойчивость. Примерно постоянная температура в слое может быть обеспечена ступенчатым распределением поверхности теплоотвода по высоте. Часто такой режим оказывается оптимальным. Существенно, что изотермичность здесь обусловлена не бесконечной теплопроводностью, а локальным балансом выделения и отвода тепла. Это позволяет изучить влияние продольной теплопроводности на устойчивость стационарного режима, так как оп при изменении теплопроводности не меняется. Матрица А в (27) для модели диффузии частиц, получаемая дискретизацией линеаризованной задачи (25"), (26), является суммой трехдиагональной матрицы конечпо-разностного аналога диффузионного члена и нижней треугольной матрицы [27]. Все остальные элементы матрицы А — нулевые. Для заданных значений параметров модели находилась граница потери устойчивости системы (27) ири изменении температуры холодильника. [c.60]

    На основе существуюш,их представлений переход горения твердых ВВ в детонацию можно представить обш,ей упрош енной схемой (рис. 44), которая включает следующие стадии I — устойчивое послойное горение II — конвективное горение III — низкоскоростной (800—3500 м1сек) режим взрывчатого превращения IV стационарная, нормальная детонация. Каждая из стадий различается механизмом передачи тепла и возбуждения реакции. Основной формой передачи тепла при послойном горении является молекулярная теплопроводность, при конвективном горений — вынужденная конвекция. Низкоскоростной режим возбуждается волнами сжатия, детонация — ударной волной. В общем случае развитие процесса является ускоренным. Конечным результатом ускоренного развития является формирование ударной волны, которая инициирует детонацию ВВ, если ее амплитуда превышает критическое значение, и система является детонационноспособной (диаметр заряда превышает критический диаметр детонации). Существование и пространственная протяженность отдельных стадий зависят от структуры заряда, физико-химических (индивидуальных) свойств ВВ, условий проведения опыта. Так, например, конвективное горение может непосредственно переходить в детонацию, минуя стадию III. Развитие процесса может заканчиваться установлением низкоскоростного режима с постоянной скоростью, и возникновение детонации отсутствует. [c.110]


    В экспериментах наблюдался. начальади режим одномерной тепл(Щ)оводности, аналогичный теплопроводности в полубеско- нечном твердом теле. В течение этого начального периода температура на большей части поверхности была равномерной. Первоначально толщина пограничного слоя начинала расти примерно с постоянной скоростью почти по всей поверхности. В соответствии с результатами предыдущих теоретических исследований толщина пограничного слоя достигала максимума в течение переходного процесса, а затем снижалась до местного стационарного значения. Отмечалось, что процесс одномерной теплопроводности в каждой точке заканчивался в момент, когда влияние передней кромки распространялось до рассматриваемой точки. Эти результаты качественно согласуются с данными теоретических расчетов [44]. [c.442]

    Решение задачи было проведено Д- А. Франк-Каменецким следующим образом. Ниже взрывного предела возможен стационарный теплопой режим протеканпя реакции. При этом пространственное распределение температур в реакционном сосуде находится решением уравнения теплопроводности с распределенными источниками тепла. Естественным масштабом температур в рассматриваемой задаче является вели-1 Т  [c.431]

    При небольшой разности температур нижней Т] и верхней Т2 поверхностей слоя тепло в такой системе передается за счет теплопроводности. При повышении температуры Т1 и достижении температурным градиентом своего критического значения АТ р (рис. 111.32) покоящаяся теплопроводящая жидкость перестает справляться с переносом большого количества тепла, и устанавливается более благоприятный для процесса конвекционный режим перемещения жидкости с нижней нагретой поверхности в сторону холодной верхней поверхности слоя и обратно. Конвекционный поток циркулярного кооперативного движения молекул жидкости прибретает высокоорганизованную пространственную структуру в виде многочисленных цилиндрических или шестиугольных ячеек (ячеек Бенара), напоминающих пчелиные соты. Таким образом, из совершенно однороднохо состояния спонтанно возникает динамическая хорошо упорядоченная структура. Поскольку система при этом обменивается со средой только теплом (q) и получает, находясь в стационарном режиме, столько же тепла, сколько отдает, полный поток энтропии через нижнюю и верхнюю поверхности жидкости определяется выражением [c.449]


Смотреть страницы где упоминается термин Теплопроводность, тепло стационарный режим: [c.78]    [c.31]    [c.358]   
Основные формулы и данные по теплообмену для инженеров Справочник (1979) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Способы теплопередачи Передача тепла теплопроводностью, (теплопроводность при стационарном режиме)

Теплопроводность при стационарном режиме

Теплопроводность, тепло



© 2025 chem21.info Реклама на сайте