Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия РНК-полимеразы с промоторо

    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]


Рис. 29-25. Схематическое изображение la -one-рона. Три структурных /ас-гена z, у и а расположены рядом. Перед ними находятся два регуляторных участка-р (промотор) и о (оператор). Рисунок дан не в масштабе участки р и о очень малы по сравнению с генами. Регуляторный ген i кодирует белок-репрессор. Этот белок имеет два центра связывания один для оператора, другой для индуктора. Активная форма белка-репрессора может присоединяться к оператору, препятствуя тем самым связыванию РНК-полимеразы и последующей транскрипции структурных генов z, у и а. В этих условиях Р-галактозидаза и два других белка клетками не синтезируются. Однако, если в среде вместо глюкозы присутствует лактоза, индуктор соединяется с репрессором, переводя его в неактивное состояние, в котором тот не способен взаимодействовать с оператором. В этом случае РНК-полимераза может связаться с промотором, пройти через зону оператора и начать транскрибировать три структурных гена с образованием полигенной мРНК, которая кодирует синтез трех ia -белков в рибосомах. Более детально функция промотора рассмотрена на рис. 29-27. Лактоза сама по себе не служит индуктором ас-оперона эту функцию выполняет ее изомер аллолактоза, образующаяся из лактозы. Рис. 29-25. Схематическое изображение la -one-рона. Три структурных /ас-гена z, у и а расположены рядом. Перед ними находятся два <a href="/info/32708">регуляторных</a> участка-р (промотор) и о (оператор). Рисунок дан не в масштабе участки р и о очень малы по сравнению с генами. <a href="/info/32708">Регуляторный</a> ген i кодирует белок-<a href="/info/32712">репрессор</a>. Этот белок имеет два <a href="/info/105482">центра связывания</a> один для оператора, другой для индуктора. Активная форма <a href="/info/186963">белка-репрессора</a> может присоединяться к оператору, препятствуя тем самым связыванию РНК-полимеразы и последующей транскрипции <a href="/info/200539">структурных генов</a> z, у и а. В этих условиях Р-<a href="/info/98215">галактозидаза</a> и два <a href="/info/1849696">других белка</a> клетками не синтезируются. Однако, если в среде вместо глюкозы присутствует <a href="/info/1087">лактоза</a>, <a href="/info/7922">индуктор</a> соединяется с репрессором, переводя его в неактивное состояние, в котором тот не способен взаимодействовать с оператором. В этом случае РНК-<a href="/info/33441">полимераза</a> может связаться с промотором, пройти через зону оператора и начать <a href="/info/611157">транскрибировать</a> три <a href="/info/200539">структурных гена</a> с образованием <a href="/info/700704">полигенной</a> мРНК, которая кодирует синтез трех ia -белков в рибосомах. Более детально <a href="/info/200388">функция промотора</a> рассмотрена на рис. 29-27. <a href="/info/1087">Лактоза</a> <a href="/info/595094">сама</a> по себе не служит индуктором ас-оперона эту функцию выполняет ее изомер <a href="/info/210525">аллолактоза</a>, образующаяся из лактозы.
    Итак, область эукариотического промотора рассматривается как специфический ДНК-остов, на котором собираются белки транскрипции, узнающие свои сайты связывания и взаимодействующие как друг с другом, так и с РНК-полимеразой. Нельзя исключить, что факторы транскрипции являются ферментами и в процессе этих взаимодействий осуществляются ферментативные модификации как белковых факторов, так и ДНК. Появление нового фактора транскрипции в дифференцированных клетках можно рассматривать как способ включения гена на нужной стадии развития. [c.201]

    РНК-Полимеразы из других источников также могут узнавать свои характер>-ные промоторы. Например, упоминавшаяся в начале параграфа РНК-полимераза фага Т7 специфично взаимодействует с промотором, простирающимся от -17-й до +6-Й пары нуклеотидов. Консенсусная последовательность имеет вид (в целях краткости и большей наглядности префикс d и символ р для межнуклеотидных фосфатов опущены. Снизу в той же записи представлен консенсус для района —12 f -7 для бактериальной полимеразы) [c.185]


    Наиболее хорошо изучено взаимодействие с промоторами холофермента, содержащего РНК-полимераза закрывает собой участок ДНК длиной около 60 пн и на промоторе одновременно взаимодействует с районами -35 и -10. После связывания фермента с ДНК происходит локальное расплетение цепей, что дает возможность ферменту начать синтез нити РНК на соответствующем одноцепочечном участке ДНК. После того как начинается элонгация (наращивание) цепи РНК, а-фактор высвобождается из комплекса, в состав которого входят РНК-полимераза, ДНК и синтезируемая цепь РНК. Осво- [c.143]

    Во всех до сих пор рассмотренных примерах регуляции транскрипции на взаимодействие РНК-полимеразы с промотором влияли белки. Регуляция синтеза рибосомных РНК дает пример того, что с РНК-полимеразой могут непосредственно реагировать и низко молекулярные эффекторы. [c.154]

    Особая сг-субъединица участвует в транскрипции ряда генов, ответственных за метаболизм азота. К ним относятся ген, кодирующий глутаминсинтетазу, и гены, контролирующие фиксацию атмосферного азота. Промоторы этих генов не содержат обычных для других промоторов последовательностей —10 и —35 . Вместо них имеются участки гомологии, центры которых расположены в поло- жениях —И и —21 . Поэтому неудивительно, что эти промоторы ке используются РНК-полимеразой, содержащей главную сигма-субъединицу, а . Транскрипцию этих промоторов обеспечивает одна из минорных а субъединиц, а , кодируемая геном гроМ. Однако для функционирования промотора гена глутаминсинтетазы белка (J недостаточно. Необходим еще ДНК-связывающийся белок, называемый NR[. Перед промотором имеется пять участков его связывания наибольшее сродство NRj проявляет к двум отдаленным участкам. Эти последовательности необходимы для активации промотора при низких концентрациях NRj и не обязательны при высоких. Если эти последовательности отодвинуть на тысячу пар нуклеотидов от промотора, они продолжают обеспечивать активность промотора. Предполагается, что белок NR i взаимодействует с РНК-полимеразой, расположенной на промоторе. Посадка NRi на ДНК облегчает это взаимодействие, сопровождаемое, по-види- [c.153]

    Транс-действующие факторы транскрипции, связывающиеся с элементами промотора РНК-полимеразы I, не изучены. Значительно больше известно о структуре и механизмах действия белковых факторов транскрипции, взаимодействующих с РНК-полимеразой П1. [c.209]

    Наличие цикличности во временном объединении сигма-фактора с минимальным ферментом решает дилемму, стоящую перед РНК-полимеразой привести в соответствие взаимодействие фермента с матрицей при инициации и элонгации. Это в самом деле дилемма, поскольку для инициации требуется прочное взаимодействие только с определенными последовательностями (промоторами), тогда как при элонгации необходимо прочное связывание со всеми последовательностями, вдоль которых происходит движение фермента. Минимальному ферменту присуще высокое сродство к ДНК, которое увеличивается в присутствии новосинтезированной РНК. Однако его сродство к слабым участкам связывания слишком велико, чтобы позволить ферменту эффективно находить промоторы. При этом поиск участков прочного связывания методом проб и ошибок путем ассоциации и диссоциации может длиться много часов. Сигма-фактор значительно ускоряет этот процесс, уменьшая стабильность слабых комплексов. В то же время, стабилизируя ассоциацию в участках прочного связывания, сигма-фактор необратимо сдвигает реакцию в сторону образования открытых комплексов. Но затем действия голофермента парализуются его же собственным специфическим сродством к промоторам. Поэтому, освобождаясь от сигма-фактора, фермент снова способен связываться с любой последовательностью ДНК, что позволяет ему продолжать транскрипцию. [c.135]

    Основной вопрос, возникающий при исследовании взаимодействия между РНК-полимеразой и ее промотором, состоит в следующем каким образом белок узнает специфические последовательности в ДНК Имеется ли в молекуле фермента активный центр, способный различать химическую структуру, образованную определенными основаниями в двуспиральной молекуле ДНК Насколько фермент специфичен Промоторы различаются своим сродством к РНК-полимеразе, что, возможно, имеет большое значение для контроля частоты инициации, а следовательно, и уровня генной экспрессии. Каким образом изменения в последовательности ДНК сказываются на способности взаимодействовать с ферментом  [c.139]

    Молекулярные основы взаимодействия между промотором и РНК-полимеразой пока что не выяснены. Однако, как отмечалось в гл. XVI, можно думать, что в ходе присоединения фермент должен узнавать какие то специфические особенности структуры двойной спирали ДНК и что из трех разных субъединиц, входящих в молекулу фермента, в процессе узнавания участвует, по-видимому, 0-субъединица. Таким образом, нынешние представления о количественном контроле гетерокаталитической функции заключаются в том, что транскрипция каждого гена зависит от го гена-промотора. Последовательность оснований в промоторе определяет, с какой частотой молекулы РНК-полимеразы будут к нему присоединяться, и, следовательно, задает максимальную скорость, с которой может происходить транскрипция данного гена. Для некоторых генов, таких, как /ас1, эта максимальная скорость всегда равна действительной скорости транскрипции. Однако для других генов, таких, как la Z, Y, А, максимальная скорость транскрипции достигается только тогда, когда их ген-оператор находится в открытом, т. е. свободном от репрессора, состоянии. Закрытие оператора предотвращает либо присоединение молекул РНК-полимеразы к промотору, либо их дальнейшее продвижение вдоль ДНК-матрицы, что приводит к снижению скорости выражения соответствующих генов. [c.491]


    Значение области преинициации до конца не ясно, но очевидно, что полимераза после взаимодействия с промотором проходит вдоль этой области (в присутствии нуклеозидтрифосфатов), не транскрибируя ее. Данная область, по-видимому, является складом молекул полимеразы, прошедших через промотор здесь могут разместиться несколько молекул полимеразы, и когда первая из них минует инициатор, другие молекулы могут следовать за ней поочередно, при этом каждая снимает РНК-коиию с оперона. Таким образом может образоваться несколько копий мРНК с оперона даже в том случае, если связыванию новых молекул полимеразы промотором препятствует добавление гепарина. Число копий будет равно числу молекул полимеразы, находящихся в обла сти преинициации около четырех в случае фага Т4 и более двадцати в случае фага Т5. Однако на самом деле ситуация не так проста, как кажется на первый взгляд. Так, известно, что у фага Л с one- [c.21]

    Пока остается нерешенным главный вопрос каков механизм влияния кислых доменов активации на транскрипцию Поскольку уже упоминавшиеся домены активации функционируют в самых разных гетерологичных системах (например, в клетках Drosophila, растений, дрожжей и млекопитающих), они, по-видимому, взаимодействуют с каким-то одним компонентом комплекса транскрипции. Так, активация могла бы происходить в результате связывания кислых доменов с основными гистонами в нуклеосомах, которое влияет на поведение кислых доменов при их взаимодействии с промоторами. Не исключено также, что домены активации контактируют с основным доменом РНК-полимеразы II или одного из белков комплекса транскрипции и стимулируют сборку этого комплекса или повышают его активность. Полученный с помощью ДНКазы I отпечаток транскрипционного комплекса в области ТАТА-блока изменяется, когда по соседству связываются факторы транскрипции млекопитающих. Аналогичные изменения в отпечатке наблюдаются в том случае, когда рядом с ТАТА-блоком находится последовательность UASgal а ДНК-связывающий домен GAL4 присоединяется к встроенному в ДНК синтетическому сегменту. [c.135]

    Для понимания механизмов взаимодействия РНК-полимеразы с промоторами и с белками регуляторами важно знать пространственную структуру их комплексов с ДНК. К сожалению, в настоящее время почти ничего не известно о деталя.ч пространственной структуры РНК-полимеразы и. s частности, о структуре.ее участков, азаимодействуюши с ДНК. Приблизительное [c.142]

    Два оператора имеется в галактозном опероне. Один из них располагается в районе —60 п. н. промотора, другой — в районе -г55 (рис. 92). Показано, что связывание репрессора с операторами ие мешает связыванию БАК и РНК-полимеразы с промотором. Поскольку для эффективной репрессии нужны оба оператора, пред-лолагается, что молекулы репрессора, расположенные на операторах, взаимодействуют друг с другом, образуя петлю ДНК- Такая конформация каким-то образом мешает инициации транскрипции. [c.151]

    Молекулярные механизмы, с помощью которых описанные элементы промотора регулируют транскрипцию, еще не выяснены, но несомненно, что активность промоторных элементов обусловлена связыванием с определенными белковыми факторами, обеспечивающими точную и эффективную транскрипцию генов РНК-полимеразой П. Выделены разные белки, взаимодействующие с разными участками промотора, содержащими ТАТА, ССААТ или G -мотивг. По-видимому, существует несколько белков, способных связываться с мотивом ССААТ , среди них — гетеродимер, состоящий из разных субъединиц. Белок, узнающий G -мотив , связывается с участком ДНК, включающим 18—20 п. н., в центре которого находится G -элемент. Эффективность промотора, по крайней мере частично, определяется эффективностью отдельного элемента ( мотива ) в составе промотора, числом этих элементов и их взаимным расположением. Эти элементы, вероятно, функционируют в зависимости от ближайшего нуклеотидного окружения. Замены близлежащих нуклеотидов могут сильно сказываться на эффективности действия элемента. Так, например, замены выделенных жирным шрифтом нуклеотидов в окружении G -мотива (GGGG GGGG ) могут снижать активность промотора, тогда как замена первого G на Т вполне допустима. Если область промотора содержит как G , так и СААТ-элементы, то разные белковые факторы транскрипции, взаимодействующие с ними, могут согласованно активировать транскрипцию. [c.199]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Были рассмотрены три группы эукариотических генов, транс-[ крипция которых осуществляется разными РНК-полимеразами при участии белковых факторов, взаимодействующих с характерными для каждой группы регуляторными элементами. Однако кроме них существуют еще гибридные системы транскрипции, в которых, по-видимому, одновременно могут использоваться способы регуляции, представленные в каяадом из рассмотренных типов транскрипции. Так, РНК-полимераза П1 транскрибирует гены алых ядерных РНК (см. гл. Vni) типа U6, а также гены 7SK РНК неизвестной функции, хотя те и другие не содержат внутренних промоторов и, напротив, на 5 -конце несут ряд элементов, характерных для систем транскрипции с помощью РНК-полимеразы П. [c.212]

    Согласно современным представлениям о процессе инициации, РНК-полимераза многократно связывается с ДНК в случайных местах и отщепляется от нее до тех пор, пока она не свяжется с промоторным участком. При этом считается, что фермеит узнает промотор, специфически взаимодействуя с основаниями (большой бороздки спирали ДНК (рис. 2-23). Согласно расчетам, для возникновения уникальной после-дбвательйости, узнающей РНК П0лиме разу, необходимо вполне опре- [c.206]

Рис. 29-27. А. Регуляторные участки ia -onepo-на. САР-участок промотора способен связывать САР лишь в том случае, если он находится в комплексе с сАМР, РНК-полимераза мо,-жет попасть в участок первоначального связывания только при условии, если САР-участок занят. Репрессор взаимодействует с оператором лишь в отсутствие индуктора. Б. Три структурных гена Z, у и а ас-оперона транскрибируются при условии, что в среде нет глюкозы, а присутствует лактоза. В этом случае оператор свободен от репрессора и комплекс САР-сАМР соединяется с промотором, позволяя РНК-полимеразе попасть в участок первоначального связывания, спуститься к инициирующему кодону и начать транскрибировать три структурных гена. В. Если глюкозы в среде много, то сАМР не образуется и САР поэтому не в состоянии связаться с промотором. В этих условиях РНК-полимераза не может получить доступ к промотору и /ос-гены не транскрибируются. Рис. 29-27. А. <a href="/info/32708">Регуляторные</a> участки ia -onepo-на. САР-участок промотора способен связывать САР лишь в том случае, если он находится в комплексе с сАМР, РНК-<a href="/info/33441">полимераза</a> мо,-жет попасть в участок первоначального связывания только при условии, если САР-участок занят. <a href="/info/32712">Репрессор</a> взаимодействует с оператором лишь в отсутствие индуктора. Б. Три <a href="/info/200539">структурных гена</a> Z, у и а ас-оперона <a href="/info/611157">транскрибируются</a> при условии, что в среде нет глюкозы, а присутствует <a href="/info/1087">лактоза</a>. В этом случае оператор свободен от репрессора и комплекс САР-сАМР соединяется с промотором, позволяя РНК-полимеразе попасть в участок первоначального связывания, спуститься к <a href="/info/99838">инициирующему кодону</a> и начать <a href="/info/611157">транскрибировать</a> три <a href="/info/200539">структурных гена</a>. В. Если глюкозы в среде много, то сАМР не образуется и САР поэтому не в состоянии связаться с промотором. В этих условиях РНК-<a href="/info/33441">полимераза</a> не может <a href="/info/290578">получить</a> доступ к промотору и /ос-гены не транскрибируются.
    Отчетливо виден участок длиной около 40 нуклеотидов, закрываемый РНК-полимеразой от ДНКазы I. Он включает 15 нуклеотидных остатков, с которых происходит транскрипция (они обозначены положительными 1юмерами), и предшествующий участок, с которым РНК-полимераза взаимодействует, чтобы зафиксироваться в положении, необ.ходпмом для начала процесса транскрипции (промотор, см. 5.5). [c.324]

    В1аимодействия в процессе узнавания могут быть специфическими и неспецифическими. Под специфическим нуклеиноао-бел-ковым взаимодействием подразумевается кооперативное взаимодействие определенных групп белка и нуклеиновой кислоты, возникающее за счет характерного для данного белка и данной нуклеиновой кислоты пространственного расположения этих групп. Примеры специфических взаимодействий репрессоры и операторы, РНК-полимераза и промоторы. [c.405]

    При появлении в среде лактозы или другого индуктора последний связывается с репрессором, образуя прочный комплекс. В результате репрессор отделяется от ДНК, освобождая промотор для взаимодействия с РНК-полимеразой. Однако в случае 1ас-оперона удаление репрессора оказывается недостаточным для того, чтобы началась эффективная транскрипция. В системе участвует еще одии регуляторный элемент, который активирует транскрипцию. Активация происходит за счет взаимодействия комплекса цикло-АМР-свя-зывающего белка САР (от англ. atabolite a tivator protein) и 3 , 5 -цикло-АМР с участком ДНК, также примыкающим к промотору, но со стороны, противоположной оператору (рис. 236, й). Такой тип регуляции называется позитивным. [c.415]

    Участки ДНК, к которым присоединяются регуляторные белки,-это не сами структурные гены, а непосредственно прилегающие к ним области, называемые промоторами и операторами. Промотор представляет собой последовательность оснований, распознаваемую ДНК-зависимой РНК-полимеразой он служит местом связывания РНК-полимеразы, и от него начинается транскрипция. С промотором связаны и гены, экспрессия которых не подвержена регуляции. Промоторы регулируемых генов могут изменять свои свойства в результате связывания регуляторных белков. Оператор представляет собой нуклеотидную последовательность, расположенную между промотором и структурными генами. Он тоже взаимодействует с регуляторным белком-репрессором, от которого зависит, будет ли подавлена транскрипция или она произойдет. Промотор, оператор и структурные гены образуют оперон. Опероном называют группу функционально связанных между собой генов. Белки, кодируемые генами одного оперона,-это, как правило, ферменты, катализирующие разные этапы одного метаболического пути. Транскрипция генов оперона ведет к синтезу одной общей (полицистронной) молекулы мРНК. [c.481]


Смотреть страницы где упоминается термин Взаимодействия РНК-полимеразы с промоторо: [c.180]    [c.159]    [c.170]    [c.367]    [c.367]    [c.119]    [c.152]    [c.152]    [c.292]    [c.152]    [c.152]    [c.292]    [c.102]    [c.184]    [c.458]    [c.415]    [c.410]    [c.959]    [c.167]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.154 ]

Молекулярная биология (1990) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Промоторы



© 2025 chem21.info Реклама на сайте