Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Промоторы для РНК-полимеразы

    Цикл транскрипции начинается с присоединения РНК-полимеразы к промотору — строго определенному участку ДНК, с которого начинается синтез РНК. Механизм поиска промоторов изучен Недостаточно предполагается, что молекулы РНК-полимеразы при- [c.137]

    Активность многих промоторов регулируется с помощью особых белков-регуляторов, которые присоединяются к определенным участкам ДНК и либо мешают, либо помогают РНК-полимеразе инициировать синтез РНК. В первом случае говорят о негативной во втором — о позитивной регуляции активности промотора. [c.142]


    Репрессор регулирует активность трех промоторов фага, из которы.х два, Рям и Рр, располагаются рядом. Транскрипция с промоторов Рк.ц и Рн идет в противоположных направ-лениях.. Между стартовыми точками этих промоторов располагаются три участка связывания репрессора Ок,, Ор. и Ор, (рис. 88). Участок Ор, перекрывается с участком связывания РНК-полимеразы с промотором Ррм. поэтому связывание репрессора с Ой, мешает связыванию РНК-полимеразы с Рк.м н тем самым подавляет транскрипцию. [c.145]

    БАК может выступать также и в роли репрессора транскрипции. Например, в галактозно.м опероне кроме стимулируемого БАК промотора Р[ и.меется репрессируемый БАК промотор Р- . и два про.мотора перекрываются друг с другом, так что присоединение одной молекулы РНК-полимеразы к промотору Рг препятствует присоединению другой молекулы РНК-поли.меразы к Рг (рис. 92). Присоединение БАК к ДНК мешает связыванию РНК-поли.меразы с Ра и не мешает связыванию с Р,. Поэтому БАК оказывает не только прямое, но и опосредованное активирующее действие на промотор Р]. Блокирование промотора Р-г приводит к усилению транскрипции с Р,, так как обеспечивает беспрепятственное связывание РНК-полимеразы с Р1. [c.150]

    Во всех до сих пор рассмотренных примерах регуляции транскрипции на взаимодействие РНК-полимеразы с промотором влияли белки. Регуляция синтеза рибосомных РНК дает пример того, что с РНК-полимеразой могут непосредственно реагировать и низко молекулярные эффекторы. [c.154]

    Инициация и регуляция транскрипции ДНК у эукариот с участием РНК-полимеразы в большей степени, чем у прокариот, зависит от множества других белков — факторов транскрипции, взаимодействующих с дискретными участками ДНК, образующих сложный эукариотический про.мотор. В районе промотора, прилегающего к сайту инициации транскрипции (кзп-сайту), обнаружены участки с характерными нуклеотидными последовательностями (мотивами), которые оказывают цис-действие на экспрессию близлежащего гена. Эти элементы могут взаимодействовать с РНК-полимеразой и другими белками-факторами транскрипции. Разные ядерные белковые факторы транскрипции, представляющие собой регуляторные белки, способны связываться с теми или иными нуклеотидными последовательностями ДНК, оказывая тем самым влияние На экспрессию разных генов. Такие белки, способные к диффузии [c.195]

    Итак, область эукариотического промотора рассматривается как специфический ДНК-остов, на котором собираются белки транскрипции, узнающие свои сайты связывания и взаимодействующие как друг с другом, так и с РНК-полимеразой. Нельзя исключить, что факторы транскрипции являются ферментами и в процессе этих взаимодействий осуществляются ферментативные модификации как белковых факторов, так и ДНК. Появление нового фактора транскрипции в дифференцированных клетках можно рассматривать как способ включения гена на нужной стадии развития. [c.201]


    Функция коротких и длинных повторов не ясна. Они транскрибируются и обнаруживаются в составе протяженных ядерных транскриптов, которые еще не подверглись процессингу. Короткие повторы содержат потенциальные промоторы для полимеразы-ПК поскольку они образовались на РНК-матрицах, синтезированных с помощью РНК-полимеразы III, использующей для инициации транскрипции участки внутри транскрибируемого гена (см. гл. X). [c.226]

    Ссылка на начало записи последовательности 2- длина последовательности 3-локализация в геноме(номер хромосомы, относительный адрес элемента) 4-ссылка яа две последовате- ности фланкирующих участков, возникающих при интеграции ПП 5-ссылка на последовательность участка интеграции (размер участка, сиквенс, локализация точки встраивания) 6.-ссылси на промоторы полимеразы II (локализация промоторов, каждого промотора локализация начал и концов транскрип- [c.85]

    Связавшись с промотором, полимераза начинает перемещаться вдоль гена, синтезируя мРНК (рис. 7). Обратите внимание, что по мере своего перемещения полимераза расплетает и затем вновь заплетает последовательные короткие участки ДНК. В результате этого временного расплетания [c.16]

    Открытие основных компонентов систем транскрипции и трансляции послужило важным стимулом в изучении механизмов регуляции этих процессов. В 1961 г. Ф. Жакоб и Ж. Моно опубликовали схему регуляции синтеза белков на уровне транскрипции при помощи регуляторных белков, а в 1966 г. У. Гилберт и Б, Мюллер-Хилл впервые выделили такой белок. Кроме того, оказалось, что РНК-полимераза сама является регулятором генной активности (Р. Б. Хесин. 1962—1966). Эти работы привели к открытию основных регуляторных генетических элементов — промоторов и терминаторов транскрипции. [c.7]

    Оказавшись на промоторе, РНК-полимераза образует с ним так называемый закрытый промоторный комплекс, в котором ДНК сохраняет двуспиральную структуру. В закрытом комплексе РНК-полимераза еще не способна к синтезу РНК- Этот комплекс нестабилен и легко диссоциирует при повышании ионной силы. [c.138]

    Закрытый комплекс. может обратимо превращаться в открытый комплекс, в котором РНК-поли.мераза расплетает примерно один виток двойной спирали ДНК в районе стартовой точки — нуклеотида, с которого начинаегся комплементарное копирование матрицы. В открытом ко,мплексе связь РНК-полимеразы с промотором становится значительно более прочной, че.м в закрытом. [c.138]

    Следующая стадия, инициация, требует наличия субстратов РНК-полимеразы, нуклеозидтрифосфатов и заключается в образовании первых нескольких звеньев цепи РНК- Первый нуклеотид входит в состав цепи, сохраняя свою трифосфатную группу, а последующие присоединяются к 3 -ОН-группе предыдущего с освобождением пиро юсфата. На стадии инициацни РНК-продукт связан с матрицей и РНК-полн.меразой непрочно и с высокой вероятностью может освобождаться из комплекса. В этом случае РНК-полимераза, не покидая промотора, снова инициирует РНК- Такой синтез ДИ-, три- и более длинных олигонуклеотидов называют абортивной инициацией в противоположность продуктивной (т.е. завершающейся образованием полноценного РНК-продукта) инициации. Когда РНК-продукт достигает критической длины (от 3 до 9 нуклеотидов на разных промоторах), абортивная инициация полностью прекращается, транскрибирующий комплекс стабилизируется и уже не распадается до тех пор, пока синтез. молекулы РНК не будет доведен до конца. Примерно в этот же мо.мент, который считается концом инициации и началом элонгации, ог РНК-полимеразы отделяется а-субъединица. [c.138]

    Основной элемент промотора —. место связывания РНК-полимеразы, которое она занимает перед началом синтеза РНК- В состав промоторов могут входить также участки связывания белков-регуляторов. Размер участка связывания РНК-па1и.меразы соответствует ее длине и составляет примерно 70 п. н. Располагается этот участок относительно стартовой точки несимметрично по ходу транскрипции его граница отстоит от стартовой точки на 20 п. н,, а против хода — при.мерно на 50 п. н. (рнс. 85). [c.140]

    При сравнении нуклеотидной последовательности большого числа промоторов . OU, узнаваемых РНК-полимеразой, содержащей главную о-субъедииицу, оказалось, что одинаковых среди них нет. Сходство. между ними обнаружилось в основном в двух > част-ках длиной по 6 п. н., центры которых располагаются в районах —10 и —35 п, н. (нумерация нуклеотидов про.мотора ведется от стартовой точки, которой приписывается номер +1 рис. 85). Некоторое сходство наблюдается также в районе стартовой точки. [c.140]

    На основании сравнения последовательностей разных промоторов выведена каноническая последовательность промотора, в которой представлены наиболее часто встречающиеся в каждом положении нуклеотиды. Каноническая последовательность участка —10 — ТАТААТ (эта последовательность называется также блоком Приб-нова), участки —35 — TTGA A (при рассмотрении промоторов обычно приводят последовательность только той нити ДНК, которая в транскрибируемой части совпадает с последовательностью РНК, т. е. является незначащей). Каноническая последовательность промотора несимметрична, что отражает его функциональную несимметричность. Действительно, промотор определяет не только место начала транскрипции, но и ее направление. Среди природных промоторов пока не обнаружено ни одного с канонической последовательностью, но искусственно сконструированный промотор с канонической последовательностью отличается очень высокой эффективностью (этот результат не был заранее очевиден усредненная последовательность вполне могла бы обладать средними свойствами). О том, что каноническая последовательность является наиболее эффективной, свидетельствуют и результаты многочисленных данных по мутационным изменениям последовательности промоторов изменения, приближающие последовательность промотора к канонической, как правило, увеличивают его силу, тогда как изменения, уменьшающие его сходство с канонической,— уменьшают его силу. Изменения нуклеотидной последовательности вне участков —10 и —35 обычно слабо сказываются на силе промотора. Знание этих закономерностей, однако, еще не позволяет надежно предсказывать силу промоторов и находить промоторы, рассматривая последовательность ДНК, хотя РНК-полимераза делает это очень быстро. [c.141]


    Промоторы, используемые РНК-полимеразами, содержащими минорные сг-субъединииы, заметно отличаются по нуклеотидной последовательности от промоторов, используемых РНК-полимеразой, содержащей главную о-субъединнцу. Для каждого типа о-субъеднннцы характерна своя каноническая последовательность участков, аналогичных участкам —35 и —10 . [c.142]

    Белки, осуществляющие негативную регуляиию, называются репрессорами.. Места их связывания на ДНК называются операторами. Способность многих репрессоров связываться со своими операторами зависит от низкомолекуляриых лигандов — эффекторов. Эффекторы, снижающие сродство репрессора к оператору, называются индукторами. В отсутствие индуктора репрессор связывается с оператором и мешает РНК-полимеразе начинать синтез РНК с промотора (промотор репрессирован). В комплексе с индуктором репрессор теряет способность связываться с оператором, в результате чего промотор активируется (индуцируется). Другие реп-рессоры, наоборот, могут связываться с оператором только в комплексе с эффектором (который в этом случае называется корепрес-сором). В присутствии корепрессора промотор неактивен (репрессирован), в отсутствие корепрессора активируется (дерепресси-руется). [c.142]

    Для понимания механизмов взаимодействия РНК-полимеразы с промоторами и с белками регуляторами важно знать пространственную структуру их комплексов с ДНК. К сожалению, в настоящее время почти ничего не известно о деталя.ч пространственной структуры РНК-полимеразы и. s частности, о структуре.ее участков, азаимодействуюши с ДНК. Приблизительное [c.142]

    Простейший механизм репрессии заключается в стерическом блокировании репрессором присоединения РНК-полимеразы к промотору. Такой механизм имеет место в тех промоторах, в которых участок связывания репрессора перекрывается с участком связывания РНК-полимеразы. Простейший механизм активации заключается в том, что белок-активатор присоединяется к про.мотору рядом с РНК-полнмеразой и за счет непосредственного контакта с ней облегчает образование открытого промоторного комплекса. Дискуссионными являются механизмы действия тех белков-регуляторов, которые присоединяются к ДНК на значительном расстоянии от РНК поли-меразы. Ниже рассмотрено несколько наиболее хорошо изученных примеров, иллюстрирующих различные принципы регуляции промоторов. [c.144]

    Последствия связывания с батее сложные. Этот участок частично перекрывается с участком связывания РНК-патн.меразы с промотором PR, поэтому связывание репрессора с подавляет транскрипцию с Рн. Степень перекрывания Ов с участком связывания РНК-патимеразы с промотором Ркч очень мала в нем имеется только одна фосфатная группа ДНК, с которой контактируют и РНК-пати.мераза, и репрессор. Поэтому. южно думать, что связывание репрессора с Од, не мешает связыванию РНК-поли.меразы с Ркм. Более того, показано, что репрессор, связываясь с Од, , значительно стимулирует (до десяти раз) транскрипцию с Ррч. Предполагается. что активирующее действие репрессора обусловлено тем, что в районе общего фосфата. между РНК-патимеразой и репрессором возникает белок-белковый контакт, помогающий РНК-полимеразе начать транскрипцию с промотора Рдм (рис. 88). [c.146]

    Оператор лактозного оперона располагается сразу за стартовой точкой транскрипции. Долгое время считалось, что присоединение лактозного репрессора к про.мотору стерически мешает присоединению РНК-полимеразы. Однако недавно получены данные, свидетельствующие о том, что репрессор н РНК-полимеразы могут расположиться на промоторе рядом друг с другом. Поэтому приходится ду.мать о более изощренных механизмах репрессии, включающих специфические контакты репрессора с РНК-полимеразой. В лактозном опероне имеется два псевдооператора, сходных по нуклеотидной последовательности с оператором, но обладающих [c.150]

    Два оператора имеется в галактозном опероне. Один из них располагается в районе —60 п. н. промотора, другой — в районе -г55 (рис. 92). Показано, что связывание репрессора с операторами ие мешает связыванию БАК и РНК-полимеразы с промотором. Поскольку для эффективной репрессии нужны оба оператора, пред-лолагается, что молекулы репрессора, расположенные на операторах, взаимодействуют друг с другом, образуя петлю ДНК- Такая конформация каким-то образом мешает инициации транскрипции. [c.151]

    Стартовые точки транскрипции промоторов Рс и Рва о находятся на расстоянии 147 п. н. Репрессируя Рс, белок АгаС связывается оператором araOi, перекрывающимся с участком связывания РНК-полимеразы. Находясь в состоянии активатора, АгаС-белок связывается с участком ara , непосредственно примыкающим к участку связывания РНК-поли.меразы с промотором. Можно думать, что активация происходит за счет контакта с РНК-полимеразой. [c.152]

    Особая а-субъединица участвует в транскрипции ряда генов, ответственных за метаболизм азота. К ним относятся ген, кодирующий глутаминсинтетазу, и гены, контролирующие фиксацию атмосферного азота. Про.моторы этих генов не содержат обычных для других промоторов последовательностей —10 и —35 . Вместо них имеются участки гомологии, центры которых расположены в поло- кениях —11 и —21 . Поэтому неудивительно, что эти промоторы ле используются РНК-полимеразой, содержащей главную сигма-субъединицу, а . Транскрипцию этих промоторов обеспечивает одна из минорных а субъединиц, о ", кодируемая геном rpoN. Однако для функционирования промотора гена глутаминсинтетазы белка а недостаточно. Необходим еще ДНК-связывающийся белок, называемый NRi. Перед промотором имеется пять участков его связывания наибольшее сродство NR, проявляет к двум отдаленным участка.м. Эти последовательности необходимы для активации промотора при низких концентрациях NRi и не обязательны при высоких. Если эти последовательности отодвинуть на тысячу пар нуклеотидов от промотора, они продолжают обеспечивать активность промотора. Предполагается, что белок NR взаимодействует с РНК-поли.меразой, расположенной на промоторе. Посадка NRi на ДНК облегчает это взаимодействие, сопровождаемое, по-видимому, образованием петли ДНК- [c.153]

    Добавление гуанозинтетрафосфата к очищенной РНК-полимеразе подавляет транскрипцию оперона рибосомной РНК с промотора Р1, но не влияет на транскрипцию с Р2. Поэтому подавление транскрипции рибосомной РНК гуанозинтетрафосфатом никогда не бывает полным. [c.154]

    Аттенюаторы могут регулироваться и в зависимости от уровня нуклеозидтрифосфатов. Например, в >1/г-опероне в лидерной РНК возможно образование двух шпилек, одна из которых является тер.минаторной. Первая от промотора шпилька вызывает при низкой концентрации СТР паузу транскрипции в результате рибосома, сннтезир ющая лидерный пептид, догоняет РНК-полимеразу и [c.160]

Рис. Ц[, Районы промоторов генов эукарнот, транскрибируемых РНК-полимеразой И Рис. Ц[, Районы <a href="/info/1403403">промоторов генов</a> эукарнот, транскрибируемых РНК-полимеразой И
    Молекулярные механизмы, с помощью которых описанные элементы промотора регулируют транскрипцию, еще не выяснены, но несомненно, что активность промоторных элементов обусловлена связыванием с определенными белковыми факторами, обеспечивающими точную и эффективную транскрипцию генов РНК-полимеразой П. Выделены разные белки, взаимодействующие с разными участками промотора, содержащими ТАТА, ССААТ или G -мотивг. По-видимому, существует несколько белков, способных связываться с мотивом ССААТ , среди них — гетеродимер, состоящий из разных субъединиц. Белок, узнающий G -мотив , связывается с участком ДНК, включающим 18—20 п. н., в центре которого находится G -элемент. Эффективность промотора, по крайней мере частично, определяется эффективностью отдельного элемента ( мотива ) в составе промотора, числом этих элементов и их взаимным расположением. Эти элементы, вероятно, функционируют в зависимости от ближайшего нуклеотидного окружения. Замены близлежащих нуклеотидов могут сильно сказываться на эффективности действия элемента. Так, например, замены выделенных жирным шрифтом нуклеотидов в окружении G -мотива (GGGG GGGG ) могут снижать активность промотора, тогда как замена первого G на Т вполне допустима. Если область промотора содержит как G , так и СААТ-элементы, то разные белковые факторы транскрипции, взаимодействующие с ними, могут согласованно активировать транскрипцию. [c.199]

    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Были рассмотрены три группы эукариотических генов, транс-[ крипция которых осуществляется разными РНК-полимеразами при участии белковых факторов, взаимодействующих с характерными для каждой группы регуляторными элементами. Однако кроме них существуют еще гибридные системы транскрипции, в которых, по-видимому, одновременно могут использоваться способы регуляции, представленные в каяадом из рассмотренных типов транскрипции. Так, РНК-полимераза П1 транскрибирует гены алых ядерных РНК (см. гл. Vni) типа U6, а также гены 7SK РНК неизвестной функции, хотя те и другие не содержат внутренних промоторов и, напротив, на 5 -конце несут ряд элементов, характерных для систем транскрипции с помощью РНК-полимеразы П. [c.212]

    Один нз способов перемещения требует прежде всего образования РНК-матрицы, которая копируется при участии обратной траискриптазы (рис. 118). Эго было экспериментально доказано для ретротранспозонов дрожжей и дрозофилы. Ретротранспозоны транскрибируются с помощью РНК-полимеразы I. В составе ДКП имеются сайты инициации транскрипции и сигналы полиа-Деннлирования. ДКП могут служить активными промоторами, ванскрипция начинается в одном ДКП (условно левом, 5 -ДКП) [c.227]

    Еще одна регуляторная система, механизм которой проясняется,—это гены, стимулируемые стероидными гормонами. Белок-регулятор, связываясь с гормоном, приобретает способность садиться на регуляторные участки и активировать соответствующие гены. Описан также белок, который связывается с регуляторной областью геиов теплового шока дрозофилы и включает эти гены (см. с. 199). Тепловой шок вызывает переход этого белка из цитоплазмы в ядро и его связывание с последовательностью ДНК, обеспечивающей включение генов теплового шока. Предполагается, что, связываясь с ДНК вблизи промотора, он активирует РНК-полимеразу П. [c.250]

    Важный вопрос организации хроматина касается судьбы нуклеосом при транскрипции. Электронная микроскопия интенсивно транскрибирующихся участков хроматина, например рибосомных генов, ясно показывает, что нуклеосом на них нет даже в тех случаях, когда между молекулами РНК-полимеразы, движущимися одна за другой по гену, виден промежуток. Необходимо отметить, Что регуляция активности рибосомных генов осуществляется в клетке путем изменения числа работающих генсв, но не интенсивности транскрипции. Однако промоторы рнбосомных генов всегда находятся в активной конформации (свободны от гистонов). [c.254]


Смотреть страницы где упоминается термин Промоторы для РНК-полимеразы: [c.85]    [c.135]    [c.139]    [c.142]    [c.144]    [c.149]    [c.152]    [c.152]    [c.153]    [c.158]    [c.162]    [c.208]    [c.224]    [c.251]    [c.254]   
Гены (1987) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Промоторы



© 2025 chem21.info Реклама на сайте