Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азот, метаболизм

    Помимо метаболических путей синтеза и распада аминокислот, нуклеотидов и других азотистых веществ у многих организмов имеется специализированный метаболизм включения избыточного азота в сравнительно малотоксичные продукты экскреции. Все эти стороны метаболизма азота будут рассматриваться в этой главе, но из-за исключительной сложности предмета изложение будет сжатым. Сначала мы рассмотрим реакции, с помощью которых из неорганических соединений образуются органические азотистые соединения, а затем обратимся к реакциям, затрагивающим азотный фонд. Далее мы рассмотрим специфические реакции синтеза и катаболизма индивидуальных азотистых соединений. [c.81]


    Известно более 250 НАД (Ф)-зависимых дегидрогеназ, активно участвующих в реакциях промежуточного обмена. Но не все из них имеют отнощение к энергетическому метаболизму. С помощью дегидрогеназ осуществляется перенос гидрид-иона (2ё + Н —> Н") от субстрата к НАД(Ф), при этом в среду переходит протон (рис. 93, А). Атом водорода входит в состав пиридинового кольца, а электрон присоединяется к азоту пиридинового кольца. После восстановления НАД(Ф) Нз отщепляется от активного центра фермента и переносится к мембране, где акцептируется [c.361]

    Бактерии в корневой зоне растений, используя корневые выделения, в известной мере играют роль санитаров, очищая зону корня от продуктов метаболизма растений. Минерализуя органические остатки, они в то же время переводят ряд элементов питания в доступную для растений форму. Отдельные виды бактерий, развивающиеся на корнях, продуцируя ростовые вещества и витамины, могут оказать положительное влияние на рост растений. Однако необходимо отметить, что многие бактерии, развивающиеся в корневой зоне и на корнях, обладают денитрифицирующей способностью и в определенных условиях могут вызвать большие потери азота из почвы. [c.178]

    В имитационных моделях, предназначенных для углубленного исследования и интерпретации данных наблюдений в экспериментах с экологическими микросистемами, используются уравнения кинетики сложных гетерогенных систем. Блок-схема связей элементов в экологической системе приведена на рис. У1-3 [59]. Имитационные модели не только учитывают разнообразные компоненты системы и потребление кислорода на отдельных стадиях, но и используют закон сохранения количества вещества, в данном случае накопление азота в биомассе и выделение его при метаболизме или в результате гибели микроорганизмов [c.159]

    Основным условием биоразложения нефтепродуктов является присутствие воды и минеральных солей, источников азота (питательной среды для микроорганизмов) и свободного кислорода (3—4 мг/мг насыщенного углеводорода для полного окисления в углекислоту и воду). Биоразложение протекает при температурах от -2 до 70"С (оптимально при 20—25"С) и ускоряется при диспергировании среды. Оказывает влияние присутствие зафязнений типа бензина и керосина, ингибирующих хемотропизм — перемещение живых клеток и микроорганизмов под действием химических веществ. Продуктами биоразложения являются диоксид углерода, вода, аммиак, сероводород, гидропероксиды, спирты, фенолы, карбонилсодержащие соединения, жирные кислоты и сложные эфиры, а также клеточная масса и продукты обмена веществ микроорганизмов (метаболизма) — метаболиты, в том числе слизи полисахаридного состава [21]. [c.82]


    Мочевина — один из главных конечных продуктов метаболизма азота у животных, в относительно большом количестве присутствует в моче человека. Это твердое кристаллическое вещество с т. пл. 133 °С, очень хорошо растворимое в воде, растворимое в этаноле, но нерастворимое в таких апротонных растворителях, как бензол, эфир или хлороформ. Несмотря на то что мочевину можно изобразить как чисто ковалентное соединение, ее свойства более согласуются с резонансными ионными каноническими формулами (структуры, содержащие в одной и той же молекуле положительный и отрицательный заряды, называются цвиттер-ионы>). [c.171]

    Биологическая очистка сточных вод является преимущественным методом для биохимических производств и основана на способности микроорганизмов в процессе метаболизма трансформировать и утилизировать органические соединения, азот, фосфор и [c.218]

    Одной из самых примечательных реакций метаболизма азота является превращение двухатомного азота (N2) в аммиак. Подсчитано, что в 1974 г. в результате такой биологической фиксации азота на землю было перенесено 17,5-10 ° кг азота (сравните это с фиксацией [c.82]

    Особая сг-субъединица участвует в транскрипции ряда генов, ответственных за метаболизм азота. К ним относятся ген, кодирующий глутаминсинтетазу, и гены, контролирующие фиксацию атмосферного азота. Промоторы этих генов не содержат обычных для других промоторов последовательностей —10 и —35 . Вместо них имеются участки гомологии, центры которых расположены в поло- жениях —И и —21 . Поэтому неудивительно, что эти промоторы ке используются РНК-полимеразой, содержащей главную сигма-субъединицу, а . Транскрипцию этих промоторов обеспечивает одна из минорных а субъединиц, а , кодируемая геном гроМ. Однако для функционирования промотора гена глутаминсинтетазы белка (J недостаточно. Необходим еще ДНК-связывающийся белок, называемый NR[. Перед промотором имеется пять участков его связывания наибольшее сродство NRj проявляет к двум отдаленным участкам. Эти последовательности необходимы для активации промотора при низких концентрациях NRj и не обязательны при высоких. Если эти последовательности отодвинуть на тысячу пар нуклеотидов от промотора, они продолжают обеспечивать активность промотора. Предполагается, что белок NR i взаимодействует с РНК-полимеразой, расположенной на промоторе. Посадка NRi на ДНК облегчает это взаимодействие, сопровождаемое, по-види- [c.153]

    ФОТОСИНТЕЗ, ФИКСАЦИЯ АЗОТА И ПРОМЕЖУТОЧНЫЙ МЕТАБОЛИЗМ [c.395]

    Азот (наряду с углеродом, водородом и кислородом) является одним из четырех основных элементов, участвующих в построении клетки. В расчете на сухие вещества его содержится приблизительно 10%. Природный азот бывает в окисленной, восстановленной и молекулярной формах. Подавляющее больщинство прокариот усваивают азот в восстановленной форме. Это соли аммония, мочевины, органические соединения (аминокислоты или пептиды). Окисленные формы азота, главным образом нитраты, также могут потребляться многими прокариотами. Так как азот в конструктивном клеточном метаболизме используется в форме аммиака, нитраты перед включением в органические соединения должны быть восстановлены. [c.85]

    Конструктивный метаболизм цианобактерий представляет собой шаг вперед по пути дальнейшей независимости от органических соединений внешней среды по сравнению с пурпурными и зелеными серобактериями. Для построения всех вешеств клетки цианобактериям нужен минимум простых неорганических соединений углекислота, самые простые формы азота (аммонийные, нитратные соли или молекулярный азот), минеральные соли (источники фосфора, серы, магния, железа, микроэлементов), вода. Цианобактерии не требуют никаких питательных компонентов в восстановленной форме. Только некоторые морские виды обнаруживают потребность в витамине В 2. [c.317]

    К основным питательным веществам, используемым микроорганизмами в качестве исходного сырья для биосинтеза, следует отнести углерод, азот и фосфор. При аэробном культивировании микроорганизмов в энергетическом метаболизме клетки непосредственное участие принимает кислород, выполняя роль акцептора электронов. С участием молекулярного кислорода происходит окисление углеводородного субстрата с последовательным образованием надвинного спирта, а затем жирной кислоты. При анаэробном процессе микроорганизмы получают энергию в результате окисления, когда акцепторами электронов выступают неорганические соединения. У фототрофов (фотосинтезирующих бактерий, водорослей) в качестве источника энергии служит энергия солнечной радиации. [c.10]

    Эволюция живого мира в течение геологического времени приводит к расширению круга таксонов, к увеличению разнообразия форм и замене одних форм другими. Отмечаются и различия в биохимическом составе организмов, стоящих на различных ступенях генетической лестницы, несмотря на единство биохимического плана строения живых организмов. Органические компоненты живых веществ представлены главным образом белками, жирами, углеводами и построены из атомов углерода, водорода, кислорода, азота, серы, фосфора. Клетки живых организмов и растений используют эти элеме+iTbi в качестве источника химической энергии в ходе метаболизма. Распад химических веществ в клетках различных животных осуществляется по единому плану. Однако имеется и ряд различий в биохимическом составе организмов, обусловленных как эволюцией живого вещества в фанерозое, так и различием условий жизни в разных бассейнах в одно и то же геологическое время. [c.188]


    Главная особенность механизма действия этого кофермента, которую сло-дует подчеркнуть, — это протонный перенос. При переаминировании [реакция (7-1)], важненщем процессе метаболизма азота, пнридоксаль превращается в пиридоксамин. [c.431]

    Пуриповые производные имеют большое значение для нуклеиновых кислот, пурин является скелетом мочевой кислоты— основного конечного продукта метаболизма азота у наземных беспозвоночных и пресмыкающихся. Кофеин — воз- [c.309]

    При исследовании биоповреждений металлоконструкций имеются определенные методологические трудности. Во-первых, био-повреждения материалов микроорганизмами носят специфический характер. В отличие от других видов повреждений в них непосредственно участвуют живые организмы, т. е. приходится иметь дело с биологическими объектами и процессами. Ркследования осложняются из-за видового многообразия микроорганизмов и взаимного влияния их друг на друга как положительного, так и отрицательного (симбиоз, комменсализм, конкуренция, антагонизм и т. п.), а также вследствие сложных процессов, протекающих внутри самого микроорганизма (метаболизм, анаболизм, катаболизм). Кроме того, нестабильность некоторых полимерных материалов и влияние их на микроорганизмы еще более усложняет проблему. Материалы конструкций техники и сооружений, а также условия эксплуатации последних, в особенности температурные факторы, влияют на развитие микроорганизмов и вызывают их эволюцию. Выявлено, что отдельные полимеры ЛКП и некоторые вещества (амины, кетоны, окислы азота и пр.), а также пониженная температура (-Ь4...-Ьб °С), искусственная аэрация и другие факторы определяют видовой состав (отбор) и адаптацию наиболее жизнеспособных микроорганизмов. В процессе отбора и адаптации повышается их агрессивность в отношении материалов, на которых они образуют колонии. [c.47]

    До 1940 г. аминокислоты обычно рассматривались как относительно стойкие строительные блоки, поступающие в организм с пищей. От этих представлений быстро отказались после начатых Шёнкеймером исследований метаболизма ННз и аминокислот, меченных изотопом Сразу же обнаружилось, что азот часто быстро переходит из одного углеродного остова в другой. Эти результаты подтвердили предположения, выдвинутые ранее Браунштейном (гл. 8, разд. Д). Браунштейн указывал, что С4- и С5-аминокислоты, аспартат и глутамат, тесно связанные с циклом трикарбоновых кислот, способны быстро обменивать свои аминогруппы на аминогруппы других аминокислот путем переаминирования [уравнение (14-12), стадии бив]. Поскольку при этом аммиак легко включается в глутамат [уравнение (14-12), стадия а ом. следующий раздел], нетрудно представить себе существование общего пути синтеза аминокислот. [c.88]

    Естественные процессы утечки горючих ископаемых из залежей и биологическая активность приводят к гораздо большему загрязнению окружающей среды углеводородами, чем это способны сделать автомобильные выхлопные газы и случайно пролитая нефть. Окисление и метаболизм углеводородов также могут осуществляться в результате естественно протекающих процессов. Однако типичные проблемы загрязнения возникают в тех случаях, когда локальное повышение концентрации отходов в плотнонаселенных районах превышает возможности их переработки либо когда на нескольких квадратных километрах поверхности океана разливается нефть. В природе происходит образование больших количеств моноксида углерода и оксидов азота. В скальных породах, почве и естественных источниках воды могут встречаться тяжелые металлы. Полностью освободиться от них не только невозможно, но даже и нежелательно. Оксиды азота, образующиеся во время грозовых разрядов, приводят к появлению нитратов, которые являются продуктами питания для растений, а многие из тяжелых металлов в микродозах необходимы для нормального развития растений и поддержания жизни животных. [c.505]

    Определение метионина (по Салливану-Мак-Карти). Метионин НзС—S—СНа—СНа—СН—NHa OOH (а-амино-7-метилтиол-н-масляная кислота) является незаменимой обязательной аминокислотой, определяющей полноценность белков и играющей важную роль в метаболизме. Он является источником метиль-ных групп при синтезе пектиновых веществ, а также имеет большое значение при синтезе холина, который относится к группе витаминов В. В сахарном производстве холин играет отрицательную роль как антикристаллизатор сахара (вредный азот). При переносе сульфгидриль-иых групп метионин является источником образования цистеина. [c.20]

    Высокое содержание нитратов, ионов аммония, калия, фосфата способствует быстрому росту клеток. Истощение среды значительно снижает рост и процессы вторичного метаболизма. Однако изначально низкое содержание фосфатов в питательной среде способно стимулировать синтез вторичных метаболитов. Установлено, что культивирование каллусов солодки голой на среде с половинной концентрацией азота и фосфора в темноте увеличивает содержание фенольных соединений в 1,6 раза по сравнению с каллусами, растущими на полной среде. В среду могут бьггь добавлены эндоспермы незрелых зародышей (кокосовый орех, конский каштан и др.), пасока некоторых деревьев, различные экстракты (солодовый, дрожжевой, томатный сок). Введение их в среду дает интересные результаты, но такие эксперименты трудно воспроизводимы, так как действующий компонент, как правило, точно неизвестен. Например, добавление в прггательную среду отдельных фракций кокосового молока не давало никаких результатов, в то время как нефракционированный эндосперм вызывал деление клеток. [c.162]

    Браунщтейн представлял себе щирокую распространенность и значение этого процесса переаминирования в метаболизме азота в живых организмах. Был обнаружен ряд аминотрансфераз (трансампназ), катализирующих подобные превращения, в которых одним из реагентов является обычно глутамат. [c.210]

    Кроме основных элементов состава клетки (С, Ы, О, Н) для ее построения необходимы в незначительном количестве и другие компоненты. Так, потребность клетки в марганце составляет 10-10- мг на 1 мг снятой БПКб, меди— 14,6-10- , цинке— 16-10 , молибдене — 43-10- , селене — 14-Ю- , магнии — 30-Ю-", кобальте — 13-10 , кальции 62-10- , натрии — 5-10- , калии — 45-10—, железе —12-10 , карбонат-ионе — 27-. 10- . Содержание указанных элементов в природных водах, из которых затем образуются сточные, обычно достаточно, чтобы полностью удовлетворить требованиям бактериального метаболизма. Часто не хватает азота и фосфора и их добавляют искусственно в виде суперфосфата, ортофосфорной кислоты, аммофоса, сульфата, нитрата или хлорида аммония, мочевины и т. п. [c.162]

    Конструктивный метаболизм пропионовых бактерий претерпел дальнейшую эволюцию в сторону большей независимости от органических соединений внешней среды. Пропионовые бактерии характеризуются хорошо развитыми биосинтетическими способностями и могут расти на простой синтетической среде с аммонийным азотом в качестве единственного источника азота при добавлении к среде пантотеновой кислоты и биотина, а для некоторых видов и тиамина. У ряда пропионовых бактерий обнаружена способность к азотфиксации. [c.231]

    По данным Эккенфельдера (США), потребность в биогенных элементах подсчитывают из условия, что активная биомасса илов содержит примерно 12,3 % аюта и 2,6 % фосфора, а остаток после биогенного метаболизма имеет соответственно 7 % азота и 1 % фосфора. Требуемые минимальные количества азота и фосфора подсчитываются на без-зольную часть ожидаемого прироста ила. [c.162]

    Ввиду того что трипсин богат цистеином, этот синтез вызывает большой расход серосодержащих аминокислот, возникающих в реакциях метаболизма. Кроме того, инъекции ПЗ или ХК-ПЗ приводят к увеличению размеров поджелудочной железы и секреции ферментов у крыс [74]. Эти явления сопровождаются потерями экзогенного азота за счет ослабления протеолиза в кишечнике [86] и эндогенного азота вследствие выделения комплексированного трипсина [63]. Между тем ингибиторы протеаз бобовых, как это отметил Безансон [6], не являются единственной причиной гипертрофии поджелудочной железы помимо этого, трипсин человека, видимо, менее чувствителен к ингибиторам, содержащимся в сое, чем трипсин крыс или крупного рогатого скота. [c.334]

    Деятельность микроорганизмов в океанах также является мощным источником следовых газов. Морская вода обогащена растворенными сульфатами и хлоридами [и в меньщей степени солями других галогенов фтора (F), брома (Вг), йода (1) . Морские микроорганизмы используют эти элементы в метаболизме, в результате чего образуют серу (S)- и галогенсодержащие следовые газы. Однако содержание азота в поверхностных морских водах настолько низкое, что в действительности океаны являются азотной пустыней. Это означает, что морская вода не служит достаточно большим источником азотсодержащих микрокомпонентных газов. [c.42]

    Фотосинтез, фиксация азота и промежуточный метаболизм. Э. Хаслам 395 [c.9]

    В течение нескольких последних десятилетий химики и биохимики поделили сферы интересов в области молекулярных аспектов биологии. Сферой биохимиков стала динамика живой клетки, ее отдельные функции и их контроль. Интересы химиков-органиков сфокусировались на изучении аккумулирующихся в клетках метаболитов первичных метаболитов (углеводов, белков, нуклеиновых кислот, липидов, стероидов) и множестве вторичных метаболитов (алкалоидов, терпенов, фенолов, хннонов и разнообразных микробных антибиотиков). Это разделение сфер интересов не должно заслонять общие цели. Поэтому, хотя в последующих главах и в тексте всей книги основное внимание при обсуждении биосинтеза уделяется темам, представляющим особый интерес для химиков, мы считаем необходимым рассматривать результаты исследований прежде всего исходя из наших знаний о промежуточном метаболизме и двух фундаментальных биосинтетических процессах — фотосинтеза и фиксации азота, являющихся исходным пунктом и основой для последующего анализа путей биосинтеза. [c.396]

    Периодическое добавление субстрата к растущей культуре рекомбинантных микроорганизмов продлевает экспоненциальную фазу и отсрочивает наступление стационарной фазы, во время которой инициируются клеточные ответы на стрессовые воздействия, происходит синтез протеиназ и другие изменения метаболизма, уменьшающие выход рекомбинантного белка. Для поддержания метаболизма клетки-хозяина количество добавляемого субстрата необходимо постоянно увеличивать. Чтобы обеспечить непрерывный синтез рекомбинантного белка и его стабильность, нужно тщательно контролировать процесс и добавлять субстрат (источник углерода и азота вместе с микроэлементами) сразу, как только в этом возникнет нсобходмость. В зависимости от генотипа микроорганизма и природы рекомбинантного белка при периодической ферментации с добавлением субстрата выход продукта может возрасти на 25-1000 % по сравнению с простой периодической ферментацией. [c.353]

    Несколько слов о самой книге. В предисловии к монографии ее авторы, общепризнанные мировые авторитеты в этой области, отмечают, что они не ставили целью дать подробный свод жестких норм и правил проектирования и строительства современных систем сточных вод. Основная направленность книги в другом — в последовательном обобщении фундаментальных и практических знаний, лежащих в основе применяемых и разрабатываемых на перспективу технологий очистки сточных вод, а также в формировании нового, более экологичного и ресурсосберегающего технологического мировоззрения при решении этой проблемы. Так как основные процессы очистки зиждятся на фундаменте биотехнологических методов, то в книге существенное внимание уделено описанию базовых биологических процессов (гл. 3), а также кинетики роста и метаболизма микроорганизмов (гл. 3-9)—основных рабочих лошадок в процессах минерализации органических загрязнений и перевода неорганических загрязнений в безопасные формы. В этой связи я предвижу определенные трудности при усвоении предлагаемого здесь материала читателями с традиционной технологической подготовкой, прекрасно разбирающимися, например, в том, как и из каких материалов построить очистное сооружение, как и каким оборудованием организовать материальные потоки и т. д., но имеющими весьма поверхностную подготовку в области микробиологии и химической инженерии. Между тем даже простое понимание механизмов, лежащих в основе современных биотехнологий очистки сточных вод (например, удаления азота и фосфора), требует более гармоничного образования по специальности, предполагающего, помимо знания названных выше дисциплин, также и хорошую математическую подготовку. [c.6]

    В первую подфуппу включены грамотрицательные бактерии, объединенные в семейство Nitroba tera eae, источником энергии для которых являются процессы окисления аммонийного азота или нитритов. Во второй подгруппе объединены бактерии, способные окислять неорганические восстановленные соединения серы. У большинства из них доказана способность использовать этот процесс для получения клеточной энергии. Облигатно хемолитотрофные водородные бактерии, представленные одним родом Hydrogenoba ter, вьщелены в третью подгруппу. В четвертую подгруппу отнесены бактерии, способные окислять и/или откладывать вне клетки окислы железа и марганца. Последние накапливаются в капсулах или во внеклеточном материале, редко — внутри клетки. Поскольку большинство бактерий этой подфуппы не получено до сих пор в чистой культуре, многие стороны их метаболизма остаются неясными. [c.175]

    Электронтранспортная цепь водородных бактерий по составу аналогична митохондриальной (см. рис. 94). Большинство из них относится к облигатным аэробам. Однако среди облигатных аэробов преобладают виды, тяготеющие к низким концентрациям О2 в среде. Особенно чувствительны к О2 водородные бактерии, растущие хемолитоавтотрофно, а также в условиях фиксации молекулярного азота. Последнее объясняется инактивирующим действием молекулярного кислорода на гидрогеназу и нитрогеназу — ключевые ферменты метаболизма Hj и фиксации N2. Для некоторых водородных бактерий показана способность расти и в анаэробных условиях, используя в качестве конечного акцептора электронов вместо О2 нитраты, нитриты или окислы железа. Примером факультативно аэробных водородных бактерий может служить Para o us denitri ans, у которого в аэробных условиях работает электронтранспортная цепь, аналогичная митохондриальной, а в отсутствие О2 электроны с помощью соответствующих редуктаз переносятся на N0 и NOj, восстанавливая их до N2 (рис. 98, В). Однако большая часть факультативно аэробных водородных бактерий способна к восстановлению нитратов только до нитритов. [c.385]

    У многих эубактерий конечным акцептором электронов дыхательной цепи, наиболее часто заменяющим молекулярный кислород, служит нитрат. Он может восстанавливаться до нитрита, накапливающегося в среде, или молекулярного азота, удаляющегося в атмосферу. Процесс восстановления нитрата до нитрита в системе энергетического метаболизма, получивщий название н и-тратного дыхания, щироко распространен среди эубактерий и обнаружен у представителей более 70 родов. [c.404]

    Свойство восстанавливать нитрат представляется менее необычным, если вспомнить, что бактерии, использующие в качестве источника азота нитраты (а таких много), должны иметь ферментную систему для его восстановления, так как в конструктивном метаболизме азот участвует только в восстановленной форме. Таким образом, восстановление нитрата в системе реакций конструктивного метаболизма, получившее название ассимиляционной нитратредукции (N0 — -NH3), очевидно. Оно имеет место всегда при выращивании на среде с нитратами в качестве единственного источника азота. [c.405]

    В последние полтора десятилетия в биологии произошли события, повлекшие за собой фундаментальные изменения наших представлений о функционировании самых различных биологических систем. Было обнаружено, что оксид азота - NO, является одним из универсальных и необходимых регуляторов функций клеточного метаболизма [1-12]. Неожиданно оказалось, что газ, и газ токсичный, молекула которого является, к тому же, свободным радикалом, соединением коротко-живущим и легко подвергающимся самым разнообразным химическим трансформациям, непрерывно ферментативно продуцируется в организме млекопитающих, оказывая ключевое воздействие на ряд физиологических и патофизиологических процессов. Оксид азота участвует в регуляции тонуса кровеносных сосудов, ингибирует агрегацию тромбоцитов и их адгезию на стенках кровеносных сосудов, функционирует в центральной и вегетативной нервной системе, регулируя деятельность органов дыхания, желудочно-кишечного тракта и мочеполовой системы. Существуют две стороны проблемы NO в организме млекопитающих. Первая - это образование NO в организме в недостаточных количествах, что приводит к ряду тяжелых последствий (сердечно-сосудистые, инфекционные, воспалительные заболевания, тромбозы, злокачественные опухоли, заболевания мочеполовой системы, мозговые повреждения при инсультах и др.). Другая, и не менее важная, сторона проблемы - продукция в организме избыточных количеств оксида азота. Из-за "вездесущей природы" NO, способного в результате простой диффузии проникать практически через любые биологические мембраны, слишком большой выброс этого медиатора приводит к целому ряду тяжелых патологических состояний. К таким болезням относятся септический шок (остро развивающийся, угрожающий жизни патологический процесс, обусловленный образованием очагов гнойного воспаления в органах и тканях), нейродегенеративные заболевания, различные воспалительные процессы. Поскольку хорошо известно, что генерация эндогенного NO в организме - результат окисления L-аргинина ферментами NO-синтазами, очевидно, что во избежание перепродукции этого соединения необходимо использование ингибиторов NOS. [c.30]

    Среди соединений, относящихся к кислородсодержащим гетероциклам, рассмотрим, в первую очередь, производные сиднониминов. Сиднонимины - мезо-ионный класс гетероциклов, исследование производных которого показало их значительный потенциал, как доноров оксида азота [10, 11]. Разложение сиднониминов - процесс, сильно чувствительный к кислороду и свету и приводящий, наряду с оксидом азота, к супероксид анион-радикалу. В качестве одного из примеров, приведена схема метаболизма и деградации известного антиангиналь-ного препарата молсидомина, действие которого достоверно связано с его способностью высвобождать оксид азота. [c.32]


Смотреть страницы где упоминается термин Азот, метаболизм: [c.182]    [c.192]    [c.19]    [c.93]    [c.210]    [c.34]    [c.198]    [c.460]    [c.313]    [c.77]   
Молекулярная биология. Структура и биосинтез нуклеиновых кислот (1990) -- [ c.153 ]

Молекулярная биология (1990) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Метаболизм



© 2024 chem21.info Реклама на сайте