Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрон-транспортная цепь

Рис. 25. Схема переноса электронов и протонов по электрон-транспортной цепи и протонной АТФ-синтазы Рис. 25. <a href="/info/970746">Схема переноса электронов</a> и протонов по электрон-транспортной цепи и протонной АТФ-синтазы

    Заключение. В процессе фотосинтеза происходит превращение энергии света в биохимическую энергию. Первичное действие света состоит в том, что в фотохимических реакционных центрах электроны донора переносятся на акцептор в термодинамически невыгодном направлении. По крайней мере часть электронов возвращается по электрон-транспортной цепи к реакционным центрам. Благодаря особому расположению компонентов электрон-транспортной системы в мембране это сопровождается направленным переносом протонов и созданием протонного потенциала. Таким образом, аппарат фотосинтеза-это прежде всего протонный насос, приводимый в действие светом. Протонный потенциал обеспечивает возможность преобразования энергии путем фос- [c.392]

    Фотосинтетические мембраны сходны по строению и химическому составу с плазматической мембраной (табл. 2.1), но, кроме того, содержат пигменты, поглощающие свет (бактериохлорофиллы и каротиноиды), а также компоненты фотосинтетической электрон-транспортной цепи (цитохромы, убихинон) и фосфорилирующей системы. [c.49]

    В процессах тканевого дыхания наиболее важную роль играют цитохромы h, С , с, а и (Я,. Цитохром представляет собой терминальный участок дыхательной цепи — цитохромоксидазу, которая осуществляет окисление цитохрома с и образование воды. Элементарный акт представляет собой двухэлектронное восстановление одного атома кислорода, т.е. каждая молекула кислорода одновременно взаимодействует с двумя электрон-транспортными цепями. При транспорте каждой пары электронов во внутримитохондриальном пространстве может накапливаться до б протонов (рис. 9.8). [c.310]

    Протонный насос представляет собой значительно более сложную систему по сравнению с ионными насосами, описанными ранее. Его физиологическая функция заключается не в ионном транспорте, а, наоборот, в использовании ионного градиента для синтеза АТР — наиболее важного энергетического источника клетки. Митохондриальная электронная транспортная цепь, сопряженная с дыхательной цепью, генерирует необходимый градиент протонов. Некоторые микроорганизмы в качестве источника энергии вместо дыхания используют свет (см. ниже). [c.179]

    Ре-порфирины (цитохромы) как компоненты электрон-транспортной цепи (протонного насоса) с использованием внешних акцепторов электронов (СО , сульфат) [c.520]


    Основной задачей при исследовании фотосинтеза на современном этапе являются расшифровка природы всех участников электронно-транспортной цепи от H2O до O2, установление строгой последовательности их расположения и характера донорно-акцепторных, ион-дипольных, координационных и других взаимодействий этих молекул в составе фотосинтетического аппарата, определение природы их связи с молекулами хлорофилла, белков и липидов мембран хлореллы. Все эти вопросы относятся к структуре фотосинтетического аппарата, которая непосредственно определяет его функции. [c.743]

    В этом механизме хлорофилл, поглощая фотон в первичном фотохимическом акте, отдает электрон с высоким потенциалом, полученным за счет поглощенной световой энергии. Хлорофилл выступает в качестве донора электрона. Вместе с этим хлорофилл становится электронным акцептором, так как получает положительный заряд ( дырку ) и может возместить недостающий электрон за счет цитохрома, который в свою очередь окисляется. Электрон, выделенный хлорофиллом, проходит через фотосинтетическую электроно-транспортную цепь, [c.330]

    Некоторые из этих компонентов переносят электроны, другие переносят водород. Взаиморасположение переносчиков в мембране таково, что при транспорте электронов от субстрата к кислороду протоны (Н ) связываются на внутренней стороне мембраны, а освобождаются на внешней. Можно представить себе, что электроны в мембране проходят зигзагообразный путь и при этом переносят протоны изнутри наружу. Эта система, транспортирующая электроны и протоны, получила название дыхательной или электрон-транспортной цепи. Иногда ее образно называют протонным насосом , так как главная функция этой системы— перекачивание протонов. [c.235]

    Электронный поток в электроно-транспортной цепи локализован в этих пяти многокомпонентных комплексах, или частицах, которые соответственно участвуют в переносе электронов от субстрата к НАД, от сукцината или НАД-Нг к О,, от С-Нг к цитохрому с и от восстановленного цитохрома с к молекулярному кислороду. Это исключительный случай направленного переноса потока электронов через частицы, или комплексы. [c.300]

    Соединения, имеющие хиноидную структуру, играют важную роль в электрон-транспортных цепях биологических объектов и являются простейшими моделями ряда важнейших макромолекул. Интересно, что и сами углеродные материалы могут рассматриваться как конденсированные хиноидные структуры. [c.160]

    Фотохимические реакции фотосинтеза. Общие представления о фотосистемах. Фотохимический этап фотосинтеза включает в себя ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и транспорта электронов, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают реакционный центр, в котором протекают очень быстрые реакции первичного разделения зарядов комплекс компонентов, передающих электрон от реакционного центра (электрон-транспортная цепь) комплекс компонентов, осуществляющих работу по фотоокислению воды и восстановлению реакционного центра. [c.420]

    В табл. 22 [24] приведены данные по электронным спектрам типичных комплексов Мо(1П), Mo(IV) и Mo(V). В большинстве случаев полосы, соответствующие d—d-переходам, имеют очень слабую интенсивность и во многих случаях полностью маскируются сильными полосами переноса заряда. В ряду комплексов Mo(V) полоса переноса заряда смещается в сторону длинных волн при усилении донорных свойств лиганда [21]. В том же направлении смещаются полосы в аналогичных комплексах Fe(III). В обоих этих случаях имеет место перенос заряда от лиганда к металлу [25]. Сильное взаимодействие между атомами металла и соответствующими лигандами в комплексах Mo(V) и Fe(III) и то, что оба эти металла входят в состав всех молибденсодержащих ферментов, являются сильным аргументом в пользу важной роли молибдена и железа как компонентов электрон-транспортной цепи. Из всех молибденсодержащих ферментов только ксантиноксидаза была детально изучена методом электронной спектроскопии. Поглощение, обусловлен- [c.268]

    Цитохром с, имеющий молекулярный вес 12 400 и содержащий одну гемовую группу, участвует в переносе электронов в электрон-транспортной цепи от акцептора водорода на кислород. Гемовое железо находится в низкоспиновом состоянии как в Ре(П)-, так и Ре(1И)-состояниях, так что только окисленный цитохром с имеет парамагнитный центр. [c.397]

    Передача электрона и водорода осуществляется с участием сложной системы ферментов и функционально близких к ним соединений, которые совместно с ферментами образуют единую цепь, именуемую электронно-транспортной цепью (ЭТЦ). [c.147]

    Согласно современным данным, наиболее вероятно, что сопряженное с переносом электронов аккумулирование энергии посредством образования АТФ (окислительное фосфорилирование) осуществляется в трех пунктах электронно-транспортной цепи (ЭТЦ)  [c.250]


    На второй стадии цикла высокоспиновое Ре(1П) восстанавливается до Ре(П) с помощью электронно-транспортной цепи из НАДФН, флавопротеида ФП] с молекулярной массой 79000 и цитохрома Ьз. [c.290]

    При этом не следует думать, >1то первичный электрон движется свободно, как по проводнику. Он химически связан и движется от соединения к соединению по очень сложной электронно-транспортной цепи . Очень существенным фактом является то, что молекулы хлорофилла, начиная пусковую (первую) стадию фотосинтеза, взаимодействуют с окружающей средой (электромагнитное поле и скопление различных активаторов и реагентов) не в одиночку, а сгруппировавшись в фотосистемы I и II. Ориентировочно установлено, что фотосистема I, состоящая из 60—80 молекул хлорофилла (а), 15 молекул Р-каротина, одной молекулы цитохрома / и двух молекул цитохрома 6) 15 молекул пластохинона и ферментно-белкового окружения, является только фотосборщгасом, т. е. она поглощает кванты света, запасает энергию солнца и передает ее затем в реакционный центр (РЦ1) первой фотосистемы. В этом РЦ1 находятся 2—3 десятка молекул М Хл (а) в форме Р700 (700 нм — положение первой полосы поглощения А,, этого типа ассоциатов хлорофилла) в белково-липидном окружении. Принято считать, что фотосистема I собирает кванты света в более длинноволновой части спектра (до 700 нм), а РЦ) получает энергию фотосистемы I и осуществляет темновую стадию фотосинтеза  [c.737]

    Ферменты переноса электронов и окислительного фосфорилирова-ния, находящиеся у эукариот в митохондриях, у бактерий локализуются внутри или на поверхности плазматической мембраны. Цитохромы, железосерные белки и другие компоненты электрон-транспортной цепи находятся исключительно в мембранах. Как показало детальное изучение локализации отдельных компонентов, мембрана построена асимметрично например, цитохром с расположен в ее наружном слое, а АТР-синтетаза — на внутренней стороне мембраны [64]. [c.24]

    Таким образом, в результате фотореакции донор теряет один электрон-возникает дырка (электронный дефект). Такие дырки должны заполняться электронами, которые могут поступать сюда по одному из двух путей-по пути нециклического или циклического переноса электронов. При нециклическом переносе электроны поступают от экзогенного внешнего донора в случае второй фотореакции-от молекул воды, в случае первой реакции-из электрон-транспортной цепи, связывающей обе фотосистемы между собой. При циклическом переносе электроны возвращаются от восстановленного акцептора (X ) к окисленному донору. Фотохимическая окислитс льно-восстановительная реакция, в ходе которой Р окисляется, а X восстанавливается, представлена на следующей схеме  [c.386]

    Электрокаталитические эффекты могут оказаться весьма полезными при решении проблемы фотолиза воды видимым светом на основе биологических принципов и биологических объектов. Задача сводится к проблеме переноса электронов из электронно-транспортной цепи фотосинтеза на электроды подходящей природьг. На этой основе могут быть созданы как [c.70]

    Несколько примеров. Для многих белков были измерены при комнатной температуре характерные времена различных стадий релаксации после скачкообразного восстановления иона железа в активном центре [41]. Для цитохрома С (один из главных компонентов дыхательных электрон-транспортных цепей в митохондриях аэробных организмов), при pH 10,6 были зарегистрированы три релаксационные стадии с характерными временами, около 50 мкс, 0,5 мс и 0,3 с. Для гемоглобина при pH 7,4 масштабы времени обнаруженных релаксационных стадий были 70 мкс, 0,3 мс, 0,6 мс и 50 мс. Для железосерного белка — фер-редоксина были зарегистрированы две четкие стадии с характерными временами около 100 мкс, 0,2 с. [c.79]

    Детальный анализ различи концепций Митчелла и Вильямса можно найти в монографиях 31,41]. Рассмотрим теперь образование таких неравновесных состояний в электрон-транспортной цепи митохондрий и в ферменте ДТРринтазы. [c.95]

    Эндосимбиотическая гипотеза. Клеточные органеллы эукариот имеют много фундаментальных общих черт с прокариотическими клетками. Они содержат кольцевые молекулы ДНК, их рибосомы относятся к типу 70S, а мембраны содержат компоненты электрон-транспортной цепи (флавины, хиноны, Fe-S-содержащие белки, цитохромы) и выполняют функцию дыхательного или фотосинтетического преобразования энергии. Согласно симбиотической гипотезе, митохондрии происходят от бесцветных аэробных бактерий, а хлоропласты-от цианобактерий, сделавшихся эндосимбионтами каких-то примитивных эукариотических клеток. В дальнейшем должна была произойти очень большая специализация функция регенерации АТР была передана клеточным органел-лам. Наружная мембрана эукариотической клетки не содержит компонентов электрон-транспортной цепи, С другой стороны, клеточные органеллы тоже не самостоятельны они, правда, обладают собственными молекулами ДНК, однако значительная часть информации, необходимой для синтеза их белков, находится в клеточном ядре. Примером может служить рибулозобисфосфат-карбоксилаза-ключевоп фермент ав-тотрофной фиксации Oj у зеленых растений. Она состоит из 8 боль- [c.26]

    Ферменты переноса электронов и окислительного фосфорилирова-ния, находящиеся у эукариот в митохондриях, у бактерий локализуются внутри или на поверхности плазматической мембраны. Цитохромы, же-лезо-серные белки и другие компоненты электрон-транспортной цепи находятся исключительно в мембранах. Как показало детальное изуче- [c.45]

    Из этих соединений одним из важнейших компонентов электрон-транспортной цепи фотосинтеза является пластохинон А. По своей структуре он представляет собой замещенный бензохинон с двумя метильными группами и одной полиизопреноидной цепью,состоящей из девяти остатков изопрена. Структура других пластохи-нонов еще неизвестна. Возможны различия в длине цепей, в замещенных группах. [c.177]

    АТР. Они обладают особым аппаратом дыхательной электрон-транспортной) цепью и ферментом АТР-синтазой, обе системы у прокариот находятря в плазматической мембране, а у эукариот-во внутренней мембране митохондрий. Ведущие свое происхождение от субстратов восстановительные эквиваленты (Н или электроны) в этих мембранах поступают в дыхательную цепь, и электроны переносятся на О 2 (или другие терминальные акцепторы электронов). В дыхательной цепи происходят реакции, представляющие собой биохимический аналог сгорания водорода. От химического горения молекулярного водорода они отли-чг ются тем, что значительная часть свободной энергии переводится при этом в биологически доступную форму, т.е. в АТР, и лишь небольшая доля рассецвается в виде тепла. [c.235]

    Реакцию (1) катализирует цитохромоксидаза-конечный фермент электрон-транспортной цепи. Зжесь одновременно происходит перенос [c.246]

    Многие бактерии, однако, и в анаэробных условиях используют окислительное (электрон-транспортное) фосфорилирование при этом происходит перенос электронов, получаемых при расщеплении субстрата, по (укороченной) электрон-транспортной цепи на экзогенные (добавленные в питательную среду) или эндогенные (образующиеся при разложении субстрата) акцепторы. Акцепторами электронов могут быть ионы нитрата, сульфата, карбоната и фумарата, а также сера соответствующие виды бактерий объединяют в физиологические группы нитратвос-станавливающих, денитрифицирующих, сульфатредуцирующих, метаногенных и ацетогенных бактерий, а также бактерий, восстанавливающих серу. Все эти бактерии играют важную роль в природном балансе. Так как фосфорилирование, сопряженное с транспортом электронов, долгое время считалось характерной принадлежностью аэробного дыхания, то, говоря о преобразовании энергии при окислительном фосфорилирова-нии в анаэробных условиях, в настоящее время пользуются также термином анаэробное дыхание (см. гл. 9). [c.248]

    Физиологическую группу бактерий, восстанавливающих сульфат (их называют также десульфатируюшими, сульфатредуцирующими или суль-фидобразующими), отличает способность к переносу водорода с субстрата на сульфат как конечный акцептор электронов и, таким образом, к восстановлению сульфата до сульфида, В этом процессе происходит перенос электронов, и в нем участвует цитохром с. Энергия запасается благодаря фосфорилированию в электрон-транспортной цепи в анаэробных условиях  [c.309]

    Две описанные выше пигментные системы связаны между собой электрон-транспортной цепью, важным звеном которой является пластохинон. Подобно убихинону в дыхательной цепи, пластохинон в фотосинтетической электрон-транспортной цепи находится в большом избытке и выполняет функцию накопителя (депо) электронов. Этот накопитель может вмещать не менее 10 электронов (на 1 молекулу Хл йц), поступающих от Х320. Окисление пластохинона осуществляет фотосистема I, т.е. электроны накопителя расходуются на заполнение дырок в Хл а , От пластохинона электроны передаются цитохрому / (мембраносвязанному цитохрому типа с), затем пластоцианину (растворимый медьсодержащий белок) и, наконец, хлорофиллу а . Таким образом, пластохинон выполняет важную функцию накопления и дальнейшей передачи электронов, поступающих из нескольких (как минимум десяти) электрон-транспортных цепей. [c.388]

    В результате детального исследования различий в редуктазных реакциях при различных комбинациях альдегидоксидазы, ингибиторов и акцепторов электрона был сделан вывод [63], что имеется линейная последовательность по крайней мере четырех переносчиков электронов в молекуле фермента, причем восстановление молекулярного кислорода в этой цепи осуществляется в последнюю очередь. Этими четырьмя переносчиками, по-видимому, являются молибден, кофермент р, ФАД и Ре. Дальнейшие сведения о природе электрон-транспортной цепи были получены из опытов, выполненных методом ЭПР. Альдегидоксидаза отличается от ксантиноксидазы в том отношении, что покоящийся фермент дает слабый сигнал ЭПР Мо(У) с -фактором, равным 1,97, который соответствует примерно 3% всего содержания молибдена в ферменте. При инкубации Армента с избытком субстрата интенсивность сигнала возрастает, но только до уровня, соответствующего 15—20% полного содержания молибдена. В тех же условиях около 24% флавина находится в виде семихинонного радикала = 2,00), а 25% железа — в восстановленной форме [60, 61 ]. [c.286]

    Различные соли тетразолия отличаются растворимостью и цветом в окисленном или восстановленном состоянии и их активность проявляется на различных участках электронно-транспортной цепи [7]. Для определения степени возможного потребления кислорода предложен 2- (п-йодфенил) -3- (п-нитрофенил) -5-фенилтетра-золхлорид (ТТХ) [14]. Проведена сравнительная оценка метода с использованием красителей с определением АТФ и респирометрией концентрированных проб микропланктона при исследовании морской воды [15]. Было сделано заключение, что вследствие простоты использования индикаторных красителей этот метод и в дальнейшем следует использовать при исследовании загрязнений вод. [c.243]

    В связи с микроаэрофильными условиями в клубеньках эндосимбио-тические бактерии стоят перед проблемой совмещения интенсивного дыхания (без которого невозможно поддерживать высокую активность симбиотической азотфиксации) и активной работы нитрогеназы. Это обеспечивается наличием у ризобий разветвленных электронно-транспортных цепей, в которых одни компоненты работают в аэробных условиях ех planta), а другие — в анаэробных (микроаэрофильных) условиях, в том числе в клубеньках. Наиболее важную для симбиоза роль в этих цепях иг- [c.179]

    Следует однако учесть, что данную схему электрон транспортной цепи в фотосинтезе, как и другие предаагавмые, нельзя [c.169]

    Краткую характеристику важнейших цитохромов митохондриальной электроно-транспортной цепи приводим ниже. Простетической группой п,итохрома 6 является ферропорфирин IX. В окисленной форме спектр поглощения цитохрома Ь характеризуется интенсивной полосой Соре с А,[г = 416 ммк и слабой полосой при 554 Л1мк. В восстановленной форме [c.266]

    Связанная с электроно-транспортной цепью функциональная единица является комплексом вспомогательных ферментов н кофакторов, которые участвуют в выполнении цикла трикарбоновых кислот, цикла жирных кислот и в превращениях веществ, вступающих в эти циклы. Эти ферменты тесно связаны с функциональной единицей. Каждая функциональная единица связана с набором вспомогательных ферментов и кофакторов. Если митохондрия подвергается зву-ково11 обработке, больщинство этих вспомогательных ферментов и кофакторов отделяется от структурной электроно-транспортной системы и способность к окислению в циклах трикарбоновых и жирных кислот теряется. Отсюда ясно, что связь между частью митохондрии и вспомогательными компонентами непрочная. [c.298]

    Процессы трансформации энергии при дыхании и фотосинтезе включают в себя в качестве необходимого элемента перенос электронов по электрон-транспортной цепи (ЭТЦ), образованной встроенными в мембрану окислительновосстановительными ферментами. ЭТЦ митохондрий, хлоропластов и хромато-форов фотосинтезирующих бактерий имеют большое сходство как на уровне отдельных переносчиков электронов, так и на уровне отдельных комплексов молекул-переносчиков. Одна полная цепь переноса электрона состоит из нескольких отдельных комплексов. Эти комплексы — естественные субъединицы цепи, в полной мере способные осуществлять перенос электрона. Кроме того, в ЭТЦ имеются участки, на которых перенос электрона происходит с помощью отдельных переносчиков. Соответственно при математическом описании процессов следует учитывать различия в организации отдельных участков электронного транспорта.  [c.79]


Смотреть страницы где упоминается термин Электрон-транспортная цепь: [c.178]    [c.86]    [c.26]    [c.327]    [c.390]    [c.277]    [c.299]    [c.421]    [c.207]   
Общая микробиология (1987) -- [ c.0 ]

Фотосинтез С3- и С4- растений Механизмы и регуляция (1986) -- [ c.55 , c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Транспортная РНК



© 2025 chem21.info Реклама на сайте