Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиозоли получение

    По происхождению системы с газовой дисперсионной средой разделяют, как и все дисперсные системы, на д и с п е р г а Ц И о н-ные и конденсационные аэрозоли. Диспергационные аэрозоли, образующиеся при измельчении твердых тел или распылении жидкостей, как и лиозоли, полученные путем диспергирования, имеют довольно крупные частицы и, как правило, полидисперсны. Аэрозоли, полученные методом конденсации из пересыщенных паров или в результате химических реакций, наоборот, обычно являются высокодисперсными системами с более однородными по размеру частицами. [c.341]


    Зигмонди предложил классифицировать коллоидные растворы по способности сухого остатка, полученного в результате осторожного выпаривания жидкости, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, он назвал необратимыми. Сюда относятся типичные коллоидные растворы — лиозоли металлов, гидрозоли иодида серебра и сульфида мышьяка и т. д. Обратимыми коллоидными системами он назвал системы, сухой остаток которых при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и снова [c.25]

    К диспергационным методам получения золей условно можно отнести и получение золей электрораспылением в вольтовой дуге металлических электродов, погруженных в дисперсионную среду. Этот способ можно считать диспергационным потому, что в данном случае дисперсная фаза образуется путем непосредственного диспергирования металла, при котором твердые частицы коллоидных размеров, отрываются от металлических электродов, поступают в среду и образуют лиозоль. Однако, с другой стороны, этот метод можно считать, хотя бы отчасти, и конденсационным, так как При высокой температуре дуги металл электродов превращается в пар, который, соприкасаясь с окружающей средой, охлаждается, конденсируется и образует коллоидные частицы., [c.252]

    Очень часто в полученных тем, или иным методом лиозолях помимо мицелл, электролита — стабилизатора и растворителя содержатся низкомолекулярные примеси. Например, золь иоДида серебра, полученный в результате взаимодействия нитрата серебра и иодида калия, всегда содержит значительное количество индифферентного электролита — нитрата калия, В других случаях электролиты и иные низкомолекулярные примеси могут попадать в коллоидные системы вследствие загрязненности исходных продуктов или по другим причинам. [c.255]

    Коллоидные растворы классифицируют по способности сухого остатка, полученного при осторожном выпаривании, растворяться в чистой дисперсионной среде. Системы, сухой остаток которых не способен самопроизвольно диспергироваться в дисперсионной среде, называются необратимыми (например, лиозоли металлов, гидрозоли иодида серебра и др.). Обратимыми коллоидными системами называются системы, у которых сухой остаток при соприкосновении со средой обычно сначала набухает, а затем самопроизвольно растворяется и образует прежнюю дисперсию (например, раствор желатины в воде или каучука в бензоле). Обратимость или необратимость коллоидной системы определяется отношением дисперсной фазы к дисперсионной среде. Дисперсная фаза обратимых коллоидов молекулярно взаимодействует с дисперсионной средой и поэтому способна в ней растворяться. По этому признаку дисперсные системы Делят на две основные группы лиофильные (обратимые) системы (истинно лиофильные и поверхност-но-лиофильные) и лиофобные (необратимые) системы. Если же дисперсионной средой системы является вода, эти два класса можно назвать соответственно гидрофильными и гидрофобными системами. Отсюда следует, что лиофобные коллоидные растворы являются типичными коллоидными системами, а лиофильные системы представляют собой не что иное, как растворы высокомолекулярных соединений. Существуют и промежуточные системы, которые трудно отнести к какому-либо одному из названных классов, например, золь 8102 и золи гидроксидов некоторых металлов. Лиофильные системы устойчивы, т. е. стабильны во времени, лиофобные системы неустойчивы и постепенно [c.17]


    При пептизации, как и при коагуляции, не наблюдается сте-хиометрических отношений между количествами пептизатора пептизированного осадка. Для пептизации осадка и получения лиозоля не требуется, чтобы вся поверхность частиц была покрыта слоем адсорбированного пептизатора. Так, Фаянс установил, чта для получения устойчивого золя бромида серебра частицы егО должны быть покрыты всего на Д—Vio часть от всей поверхности пептизатором, которым в этом случае будет электролит, содержащий бромид-ионы. Однако от количества пептизатора зависит дисперсность частиц в полученном золе. При малом содержании введенного пептизатора образуются частицы высших порядков, со- [c.234]

    Дисперсные системы с жидкой дисперсионной средой, лиозоли, классифицируют по интенсивности молекулярного взаимодействия на границе раздела фаз. При этом с учетом обратимости или необратимости взаимодействия дисперсной фазы и дисперсионной среды различают соответственно лиофильные илилиофобные дисперсные системы. Дисперсная система считается обратимой, если сухой остаток, полученный после выпаривания дисперсионной среды, самопроизвольно в ней растворяется при повторном контакте, образуя коллоидную систему. [c.17]

    Малое значение и непостоянство осмотического давления лиозолей являются причиной того, что осмометрия, а также эбулио-скопия и криоскопия не применяются для определения численной концентрации или размера коллоидных частиц. Следует, впрочем, заметить, что осмометрические, эбулиоскопические и криоскопиче-ские методы нельзя использовать для определения размера коллоидных частиц не только вследствие указанных причин, но и из-за обычного присутствия в лиозолях электролитов. При очистке лиозолей, например диализом, вместе с посторонними электролитами может удаляться и стабилизующий электролит, что приводит к нарушению агрегативной устойчивости системы, укрупнению частиц и, следовательно, к получению неправильных значений осмотического давления. Кроме того, на результатах осмометрических определений сильно сказывается так называемое мембранное равновесие ), или равновесие Доннана. Это равновесие устанавливается в результате сложного распределения ионов между коллоидным раствором в осмотической ячейке и внешним раствором, о чем подробно сказано в гл. XIV. [c.68]

    Из-за электропроводности лиозолей диэлектрическую проницаемость измерять необходимо с помощью переменного тока. Однако при этом надо помнить, что полученные значения зависят от частоты переменного тока. При не слишком больших частотах значение диэлектрической проницаемости не отличается существенно от тех значений, которые можно было бы найти в статическом поле, так как частицы успевают полностью поляризоваться в промежуток времени меньший, чем продолжительность одного колебания поля. Однако при больших частотах последнее условие уже не выполняется, и в растворе обнаруживается дисперсия (рассеяние) диэлектрической проницаемости, характер которой зависит от того, какой фактор обусловливает ее особенности для данной системы. [c.222]

    Получение лиозоЛей методом конденсации. К этой группе синтезов относится получение лиозолей прямой конденсацией, заменой растворителя и путем различных химических реакций. [c.245]

    Получение лиозолей методом пептнаацин. Различают следующие виды пептизации пептизация промыванием осадка пептизация осадка электролитом пептизация поверхностно-актив-ными веществами химическая пептизация. [c.254]

    Так как чужеродные электролиты действуют на коллоидные системы астабилизирующим образом, полученные золи во многих случаях приходится очищать. Низкомолекулярпые примеси можно удалять из лиозолей с помощью диализа электродиализа и ультра-4жльтрации. [c.255]

    Из этих данных следует, что независимо от начальной концентрации аэрозоля через несколько минут после его получения численная концентрация в 1 см не может быть выше 10 — 10 . Это примерно в 0 раз меньше численной концентрации лиозолей (например, обычный золь золота содержит около частиц в 1 см ). Таким [c.348]

    Метод конденсации состоит в получении нерастворимых соединений путем реакций обмена, гидролиза, восстановления, окисления. Проводя эти реакции в сильно разбавленных растворах и в присутствии небольшого избытка одного из компонентов, получают не осадки, а коллоидные растворы. К конденсационным методам относится также получение лиозолей путем замены растворителя. Например, коллоидный раствор канифоли можно получить, выливая ее спиртовой раствор в воду, в которой канифоль нерастворима. [c.294]

    Так как суспензии отличаются от лиозолей только тем, что частицы в них на несколько порядков больше, все методы, которые используются для получения лиозолей, можно применять и для получения суспензий. При этом необходимо, чтобы степень измельчения диспергационными методами была меньше, чем при получении лиозолей. При конденсационных методах конденсацию необходимо проводить так, чтобы образовывались частицы, имеющие размеры 10" -10 см. Размер образующихся частиц зависит от соотношения скоростей образования зародышей кристаллов и их роста. При небольших степенях пересыщения обычно образуются крупные частицы, при больших — п№лкие. Предварительное введение в систему зародышей кристаллизации приводит к образованию практически монодисперсных суспензий. Уменьшение дисперсности может быть достигнуто в результате изотермической перегонки при нагревании, когда мелкие кристаллы растворяются, а за их счет растут крупные. [c.196]


    Суспензии образуются также в результате коагуляции лиозолей. Следовательно, способы осуществления коагуляции — это одновременно и методы получения суспензий. [c.196]

    В присутствии небольшого избытка одного нз компонентов, получают не осйдки, а коллоидные растворы. К кокденсационным методам относится также получение лиозолей путем замены растворителя. Например, коллоидный раствор канифоли можно получить, выливая ее спиртовой раствор в воду, в которой канифоль нерас-творима. [c.313]

    Электрическая стабилизация дисперсных систем связана с возникновением двойного электрического слоя на границе раздела фаз. Такая стабилизация имеет основное значение для получения устойчивых лиозолей и суспензий в полярной среде, например в воде. В любом гидрозоле все коллоидные частицы имеют одинаковый знак заряда. Однако коллоидная мицелла в целом электронейтральна в результате образования двойного электрического слоя. Поэтому электростатическое отталкивание между коллоидными частицами (электрический фактор устойчивости) возникает только при достаточном их сближении, когда происходит перекрывание их ионных атмосфер (рнс. 102). Потенциальная энергия электростатического отталкивания тем больше, чем больше перекрывание диффузных частей двойного электрического слоя коллоидных частиц, т. е. чем меньше расстояние (х) между ними и чем больше толщина двойного электрического слоя. [c.332]

    Соотношения (IV.37), (IV.39), (IV.40) получены Эйнштейном, 1 Смолуховским на основании предположения о тепловой природе броуновского движения, поэтому сами эти уравнения не могут служить доказательством правильности такого предположения. Однако вместе с их выводом появилась возможность )того доказательства с помощью эксперимента. Справедливость., акона Эйнштейна — Смолуховского для лиозолей была подтверждена Сведбергом (1909 г.). С помощью ультрамикроскопа (,>н измерял средний сдвиг частиц золя золота в зависимости от времени и вязкости среды. Полученные данные удовлетворительно совпали с результатами, вычисленными по уравнению ПУ.40). Зеддиг (1908 г.) подтвердил связь среднего сдвига частиц с температурой, вытекающую из закона Эйнштейна — Смолуховского. Перрен (1910 г.) использовал соотношение (IV.39) для определения числа Авогадро при исследовании броуновского движения коллоидных частиц гуммигута в воде и получил хорошее совпадение с величинами, полученными ранее другими методами. Это были первые экспериментальные определения числа Авогадро. [c.245]

    Агрегативная устойчивость эмульсий количественно характеризуется скоростью их расслоения, или временем жизни отдельных капель в контакте с другими. Чаще пользуются первой характеристикой. Ее определяют, измеряя высоту (объем) отслоившейся фазы через определенные промежутки временн после получения эмульсии. Без эмульгатора устойчивость эмульсии обычно небольшая. Известны методы стабилизации эмульсий с помощью ПАВ, ВМС, порошков. Так же, как и при стабилизации лиозолей, стабилизация эмульсий с помощью ПАВ обеспечивается вследствие адсорбции и определенной ориентации молекул ПАВ, что вызывает снижение поверхностного натяжения и увеличение энтропии. Ориентирование ПАВ в эмульсиях следует правилу уравнивания полярностей Ребиндера полярные группы ПАВ обращены к полярной фазе, а неполярные радикалы — к неполярной фазе. В зависимости от типа ПАВ (ионогенные, неионогенные) капельки эмульсии приобретают соответствующий заряд или на их поверхности возникают адсорбционно-сольватные слои. [c.399]


Смотреть страницы где упоминается термин Лиозоли получение: [c.332]    [c.202]    [c.207]    [c.357]    [c.308]    [c.15]    [c.148]    [c.357]    [c.15]    [c.240]    [c.61]    [c.268]    [c.268]   
Учение о коллоидах Издание 3 (1948) -- [ c.268 ]

Краткий курс коллойдной химии (1958) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Лиозоль



© 2025 chem21.info Реклама на сайте