Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бихромат аналитическое применение

    На окислительно-восстановительных реакциях основаны многочисленные методы химического анализа. В этой главе описываются свойства и применение некоторых наиболее распространенных окислительно-восстановительных титрантов. Сначала рассмотрены три самых сильных окислителя, используемые в редокс титриметрии — перманганат калия, бихромат калия и церий(IV), затем система трииодид — иодид, в которой трииодид-ион выступает в качестве окислителя в соответствующих реакциях, а иодид-ион — в качестве восстановителя со многими окислителями. Далее, обсуждено аналитическое применение иодата, перйодата и бромата — особенно для определения органических веществ. И наконец, вкратце охарактеризованы такие ценные восстановительные титранты, как железо(II), титан(III) и хром(II). [c.315]


    АНАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ БИХРОМАТА КАЛИЯ [c.328]

    Аналитическое применение этого эффекта заключается в введении фосфат-иона для снижения потенциала Fe(II)-Fe(III) при титровании бихромата калия с применением в качестве индикатора дифениламина или дифенилбензидина. В этом случае опять-таки комплекс Fe(II) более устойчив, чем комплекс Fe(III), так как лиганд является анионом и образование я-связи маловероятно. Для уменьшения потенциала пары Fe(II)-Fe(III) по тем же соображениям можно вводить также фторид-ион. Наоборот, в присутствии большого избытка иона Fe(II) этот потенциал будет таким, что ион Fe(III) станет неспособным окислять иодид-ион до иода. Например, при использовании такой смеси Fe(II)-и Fe(III)-ионов можно колориметрически определять роданид-ион в присутствии иодида. В смесях Fe(II)- и Ре(1П)-ионов окисление иона Fe(II) воздухом до Fe(III) облегчается в присутствии лигандов типа фторид-иона, которые стабилизируют высшее валентное состояние, в то время как в присутствии лигандов типа а, а -дипиридила или 1,10-фенантролина окисление весьма сильно подавляется. [c.85]

    Для объемно-аналитического определения восстановителей в качестве окислителя может быть применен бихромат калия. Оксидиметрический метод, основанный на применении этого окислителя, носит название хроматометрии. [c.236]

    При возрастающих требованиях, предъявляемых к аналитическим реагентам в отношении их чистоты и доступности, церий(1У) в последние годы стал, по-видимому, более часто используемым окислителеА1, чем бихромат и перманганат. Во всяком случае, сейчас разработано большое количество прямых и косвенных методов определения органических и неорганических веществ при помощи этого реагента. По сравнению с другими одноэлектронными окислителями, рассмотренными выше, преимущество церия(1У) состоит в том, что он сравнительно устойчив в водном растворе при комнатной температуре. Хорошо известно, что церий(1У) легко претерпевает фотовосстановление [139] с образованием в качестве конечного продукта церия(1П) и может каталитически восстанавливаться стеклянной поверхностью [140] при 40° и выше по реакции нулевого порядка. Однако при правильном выборе растворителя [141] и соблюдении простых мер предосторожности явления такого порядка не могут быть серьезной помехой аналитическому применению этого реагента. [c.335]

    Разделение многоатомных спиртав (ксилитов, глицерина и этиленгликоля) проводили методом колоночной хроматографии на катионообменной смоле (Ки-2) с применением воды для элюирования [22]. На колонке, наполненной дауэксом 50-Х 12 (200—400 меш) или КН-2 со степенью сшивки 12%, разделяли смесь многоатомных спиртов. В качестве подвижной фазы использовалась вода при температуре 60 °С. Компоненты элюировались в следующем порядке ксилит, эритрит, глицерин, этилен-гликоль и пропандиол-1,2. Разделение занимает 24—26 ч. Фракции анализировали на рефрактометре Аббе или колориметрически после окисления бихроматом. Наилучшие результаты разделения были получены в случае, если использовали ионооб-менники в Н+-форме. На ионообменниках в Са +-форме наблюдается изменение в последовательности элюирования. Так, ксилит сорбируется на таких обменниках селективно и, следовательно, элюируется последним. Было также предложено разделение малых количеств ксилита и этиленгликоля на катионооб-менниках со свободным Н+. Этот метод можно использовать для аналитического контроля при крупнотоннажном гидролизе сахаров и многоатомных спиртов. [c.31]


    В настоящее время в литерат5фв по эстонским сланцам нет указаний на прямые аналитические определения конституционной воды минеральной части сланца, не улетучивающейся при стандартной сушке. Не опубликованы также и способы определения этой воды. Все имеющиеся сведения основаны на сравнении состава некарбонатной минеральной части эстонского сланца с составами сходных природных минералов. Между тем прямое аналитическое определение конституционной влаги некарбонатной составляющей минеральной части сланцев, в частности кукерсита, представило бы несомненный теоретический и практический интерес. Основная трудность решения этой задачи заключается, очевидно, в том, что имеющимися средствами анализа нока невозможно нацело удалить из сланца минеральную часть, не разрушая керогена и, что более важно, невозможно целиком удалить кероген, не нарушая целостности минеральной части. При этом термическое окисление керогена влечет за собой улетучивание части конституционной влаги глинистых силикатов, применение же мокрого окисления бихроматом, перманганатом и т. д. неизбежно связано с применением сильных кислот, приводящим к выделению свободной кремнекислоты из силикатов (Жукова, 1955). При сжигании навески сланца в печи для элементарного анализа к весу воды, соответствующему содержанию водорода в керогене, частично или полностью прибавляется вес улетучившейся конституционной влаги некарбонатной составляющей минеральной части сланца. В настоящей работе предпринята попытка разработать метод прямого аналитического определения конституционной воды минеральной части сланца, годный для оценки, хотя бы, порядка величин содержания этой воды в сланце. [c.143]

    Другие растворы окислителей. Перманганат, бихромат калия и другие окислители сколько-нибудь широкого применения в ультрамикроанализе не получили. Судя по имеющимся данным, методика приготовления растворов этих окислителей при ультрамикроаналитических работах не отличается от методики их приготовления для обычных аналитических целей. Перманганат калия [9 ] может быть использован в ультрамикроанализе для определения оксалатов, а также для титрования растворов солей двухвалентного железа и других аналогичных восстановителей. При работе с перманганатом калия следует соблюдать обычные предосторожности. Так, например, из титрованного раствора предварительно следует удалить небольшие примеси двуокиси марганца, которые могут попасть в него при фильтровании через стеклянный фильтр, а также убедиться в полном отсутствии органических веществ в титруемом растворе. Следует заметить, что при ультрамикротитровании перманганатом требуется индикатор, так как при его отсутствии избыток перманганата, необходимый для того, чтобы можно было заметить окраску при работе с небольшим объемом раствора, настолько велик, что ошибка титрования становится очень большой. [c.152]

    В аналитических исследованиях вод, богатых галогеноидами, широкое применение получил способ мокрого сжигания органической субстанции [4, 7, 10, 13, 16, 17, 204 2Р, 22]. Этим методом, используя в качестве окислителей бихромат, иодат, церий или персульфат, достигают полного разложения ряда индивидуальных органических соединений и веществ, обнаруживаемых в водоемах [1, 6, 8]. Концентрация органической субстанции оценивается по количеству продукта ее сожжения — двуокиси углерода, предварительно очищенной в газовой фазе от влаги, галогенов, окислов азота и серы системой поглотителей. Регистрация результатов проводится как химическими, так и физико-химическими методами. Большую ценность для химической океанографии представляет метод Мензеля и Вакаро [19], где проба (1—5 мл) после разложения бикарбонатов в запаянных ампулах автоклавированием (140°С) сжигается в присутствии (ЫН4)25208, а СОг определяется на инфракрасном фотометре. Это метод высокой точности и продуктивности (100 проб в день). [c.168]


Смотреть страницы где упоминается термин Бихромат аналитическое применение: [c.132]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Бихромат,

Применение бихромата



© 2025 chem21.info Реклама на сайте