Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мозли газов

    Однако к моменту открытия периодического закона только лишь стали утверждаться представления о молекулах и атомах. Причем атом считался не только наименьшей, но и элементарной (т. е. неделимой) частицей. Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. В 1896 г. французский физик А. Беккерель обнаружил, что материалы, содержащие уран, засвечивают в темноте фотопластинку, ионизируют газы, вызывают свечение флюоресцирующих веществ. В дальнейшем выяснилось, что этой способностью обладает не только уран. Титанические усилия, связанные с переработкой огромных масс урановой смоляной руды, позволили П. Кюри и М. Склодовской открыть два новых радиоактивных элемента полоний и радий. Последовавшее за этим установление природы а-, (5- н у-лучей, образующихся при радиоактивном распаде (Э. Резерфорд, 1899 —1903 гг.), обнаружение ядер атомов диаметром 10 нм, занимающих незначительную долю объема атома (диаметр 10 нм) (Э. Резерфорд, 1909— 1911 гг.), определение заряда электрона (Р. М и л л и к е н, 1909— 1914 гг.) и доказательство дискретности его энергии в атоме (Дж. Ф р а н к, Г. Г е р ц, 1912 г.), установление заряда ядра, равного номеру элемента (Г. Мозли, 1913 г.), и, наконец, открытие протона (Э. Резерфорд, 1920 г.) и нейтрона (Дж. Чедвик, 1932 г.) позво или предложить следующую модель строения атома  [c.23]


    Исследования Мозли подтвердили правильность размещения в системе тех элементов, которые с точки зрения атомных весов, как основы, стояли не на своих местах. Если не считать Оз, 1г, Р1 и Аи, для которых данные по атомным весам были впоследствии исправлены, то уже при самом возникновении системы имелось два таких случая кобальт (58,9) был поставлен Д. И. Менделеевым перед никелем (58,7), а теллур (127,6)— перед иодом (126,9). Это отступление от общего принципа расположения по атомным весам диктовалось свойствами рассматриваемых элементов, так как, например, теллур был очень похож по свойствам на селен, но совершенно не похож на бром, а иод, наоборот, очень похож на бром, но не похож на селен. После открытия инертных газов прибавилось третье отступление аргон (39,9) расположился перед калием (39,1). С точки зрения новой основы — зарядов ядер — все эти неувязки отпали оказалось, что кобальту действительно соответствует место № 27, никелю — № 28 и т. д. [c.219]

    Данге после того, как были открыты инертные газы (1894) наряду с новыми элементами из группы редкоземельных металлов, а также после того, как открытие радиоактивных элементов — полония, радия, актиния и протактиния, значительно расширило число известных элементов, в периодической системе все же оставались еще пустые места. Эти пустоты определились еще яснее после открытия закона Мозли (см. стр. 226 и сл.). Этот закон позволил точно определять порядковый помер любого элемента посредством наблюдения его характеристического рентгеновского излучения (см. стр. 226). Так, между прочим, оказалось, что еще не заняты места в периодической системе, принадлежащие элементам с порядковыми номерами 72 и 75. Отвечающие им элементы были открыты в 1922 и 1925 гг. и получили название гафния и рения. Для их открытия имела решающее значение возможность идентификации их па основании характеристического рентгеновского излучения, прежде чем опи были отделены от элементов, сопутствующих им в природе. [c.27]

    Мозли, расположить элементы в порядке возрастания их порядковых номеров, то обнаруживается, что некоторые химические свойства повторяются через определенные интервалы (см. верхнюю часть рис. 7-3). Так, химически инертные благородные газы (по крайней мере считавшиеся инертными до 1962 г., когда были получены соединения ксенона со фтором и кислородом), Не, Ые, Аг, Кг, Хе и Кп, имеют порядковые номера 2, 10, 18, 36, 54 и 86, т.е. расположены с интервалами в порядковых номерах 2, 8, [c.314]

    Нулевая группа была добавлена к периодической таблице после открытия Релеем и Рамзаем в 1894 г. и в последующие годы инертных газов — гелия, неона, аргона и др. Таблица, очень похожая по форме на приведенную в настоящей книге (табл. 4), была разработана в 1895 г. датским химиком Юлиусом Томсеном (1826—1909). После открытия электрона английским физиком Дж. Дж. Томсоном и разработки теории атома Эрнестом Резерфордом датский физик А. ван ден Брук высказал иредположение, что заряд ядра того или иного элемента (называемый теперь атомным номером) может быть равен порядковому номеру элемента в периодической системе. Английский физик Мозли занимался в то время определением точных значений атомных номеров многих элементов путем изучения их рентгеновских спектров, как описано в гл. IV. В 1922 г. Нильс Бор интерпретировал периодическую таб.дицу с точки зрения электронной структуры атомов (подробнее об этом см. гл. IX и X). [c.91]


    Было установлено, что рентгеновские лучи, испускаемые рентгеновской трубкой, дают линии определенной длины волны, характерные для материала мишени, используемой в этой трубке. Мозли измерил длины волн рентгеновского излучения многих элементов и установил, что их изменение происходит вполне закономерно. Длины волн двух главных рентгеновских линий элементов от алюминия до цинка (за исключением газа аргона) приведены на рис. 4.1. [c.78]

    Коссель в 1915 г., а спустя год Гилберт Н. Льюис и Ирвинг Ленгмюр. Исходя из представлений Бора и Мозли о распределении электронов вокруг ядра атома, КоссеЛь, Льюис, Ленгмюр объясняли связь между атомами в таких молекулах тем, что электроны атомов участвуют в образовании одной или более электронных пар. Таким образом, в молекуле становится возможным образование стабильной электронной конфигурации инертного газа. Например, при образовании молекулы хлора С1г происходит связывание электронов /И-орбитали с образованием одной общей электронной пары двух атомов [c.108]

    Молекулярные веса благородных газов также можно рассчитать из данных измерений плотности газа при низких давлениях, как это показано на рис. 6.13. При этом, однако, возникает вопрос о том, сколько атомов находится в молекуле газа. Мы уже знаем, что благородные газы одноатомны, но это было известно не всегда. После открытия благородных газов возникло затруднение, в какое место периодической системы следует их поместить (см. гл. И). К этим газам не удавалось применить закон Дюлонга н Пти, так как их нелегко сконденсировать в кристаллы с помощью методики, доступной в то время. Правда, благородные газы невозможно разложить на газы, состоящие из меньших молекул, что подтверждало догадку об их одноатом-ности, но этот довод все же не является достаточно убедительным. Более определенные сведения о порядковых номерах этих элементов могли бы дать метод рассеяния Резерфорда или рентгеновский метод Мозли, но ко времени открытия благородных газов этих методов еще не существовало. (Правда, если бы они уже были известны, в то время их все равно было бы очень сложно применить к благородным газам. Чем это объясняется Определите температуры плавления и кипения благородных газов по табл. 5.5 и постарайтесь дать ответ на этот вопрос.) [c.245]

    В 1913 г. английский ученый Г. Мозли, пропуская через кристалл рентгеновские лучи, излучаемые антикатодами, изготовленными из различных металлов, получил их спектры. Они оказались более простыми, чем спектры, испускаемые парами и газами. Рентгеновский спектр каждого элемента состоит из нескольких [c.60]

    А. Многие из них используются для количественных определений и идентификации технеция спектральным путем [81]. Среди них имеются линии достаточной интенсивности для идентификации технеция с чувствительностью до 10 г [21]. Получены также характеристические спектры рентгеновского излучения, которые хорошо согласуются с положением технеция в периодической системе на основании закона Мозли [82]. Какие-либо сведения о жидком и газообразном элементарном технеции в литературе отсутствуют, за исключением данных о давлении паров. Для газообразного технеция известна только величина энтропии (43,3 кал1моль при 25°С) [83] и установлено, что в масс-спектрометре при термической ионизации или электронной бомбардировке образуется ион Тс+газ [84]. Работа выхода электрона, рассчитанная по зависимости от атомного номера Z, равна 4,4 эв [85], потенциал ионизации 7,23 в [86]. Основные физические свойства технеция сведены в табл. 9, где они сопоставлены с аналогичными свойствами рения и марганца. Данные относятся к основному изотопу технеция — Тс . [c.25]

    Определение порядковых номеров на основании закона Мозли ограничено лишь Б том смысле, что до сих пор не удалось измерить характеристическое рентгеновское излучение для инертных газов и для всех элементов с атомным весом ниже натрия. В отношении инертных газов это объясняется исключительно самой техникой определения вещества, у которых должно быть возбуждено собственное излучение, должцы сами быть в твердом состоянии, либо должны быть переведены в твердые нелетучие соединения, чтобы их можно было нанести на антикатод. Для инертных газов последнее совершенно исключено, а исследованию их в замороженном состоянии препятствует сильное разогревание антикатода бомбардирующими его катодными лучами. Для элементов с атомным Несом ниже натрия (соответственно неона) измерение невозможно вследствие того, что соответственные частоты у этих элементов настолько низки (согласно уравнению Мозли, они быстро убывают с уменьшением порядковых номеров), ЧТО те кристаллические решетки, которые имеется в нашем распоряжении, уже не позволяют произвести измерение длин соответствующих волн. Тем не менее для элементов от до О удалось все же измерить потенциалы возбуждения серии К, основы- [c.260]



Смотреть страницы где упоминается термин Мозли газов: [c.79]   
История химии (1975) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Мозли

Мозли растворимости газов в воде

Мозли состояния газов



© 2024 chem21.info Реклама на сайте