Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нонсенс-мутанты

    Две другие рамки считывания, которые находятся в иной фазе по отношению к открытой рамке считывания, обычно не могут быть использованы для синтеза белка, поскольку в их последовательности слишком часто встречаются кодоны-терминаторы. Такие рамки считывания называют блокированными. Типичный пример перекрывания открытой рамки считывания с двумя блокированными рамками считывания показан на рис. 4.8. Поскольку давление отбора происходило в пользу открытой рамки считывания, как о том свидетельствует последовательность аминокислот, в двух других фазах считывания шло беспрепятственное накопление кодонов-терминаторов. Возможно даже, что их накопление оказалось благоприятным, для того чтобы избежать образования нежелательных белков. В случайной последовательности ДНК кодоны-терминаторы составляют 3/64, что соответствует 1 кодону-терминатору на 20 триплетов (в зависимости от точного состава оснований). (Поэтому у мутантов со сдвигом рамки синтез полипептидной цепи обычно рано прекращается из-за нонсенс-кодона, оказавшегося во внефазовой рамке считывания.) [c.63]


    Наиболее просто устроены РНК-содержащие бактериофаги R 17, f 2, Q и др. Их генетический материал представлен одноцепочечной молекулой РНК. У этих бактериофагов, а также у одноцепочечных ДНК-содержащих фагов было обнаружено перекрывание генов. Эти факты рассматривались в гл. 15. Само перекрывание генов накладывает определенные ограничения на их изменчивость, поскольку одна и та же мутация может оказаться в пределах двух структурных генов и таким образом повреждать две функции. Именно это и было обнаружено при изучении нонсенс-мутанта по гену, кодирующему белок лизиса у бактериофага f 2. Та же мутация привела и к нарушению синтеза репликазы этого фага. Для структурного гена репликазы та же мутация приводила к появлению не нонсенс-аллели, а миссенс-аллели, поскольку перекрывающиеся гены транслируются в разных фазах со сдвигом считывания на один нуклеотид. [c.478]

    Если нужно получить мутант, генетический дефект которого нельзя компенсировать добавками питательных веществ (например, дефекты ферментов, участвующих в репликации ДНК и РНК, дефекты в каком-либо элементе белоксинтезирующего аппарата), его следует искать среди условно летальных мутантов, которые жизнеспособны лишь при определенных условиях. Примерами таких мутантов могут служить температурочувствительные мутанты и штаммы, несущие супрессорные нонсенс-мутации. В табл. 13.1 приведены свойства мутаций различных типов она может служить ключом для выбора наиболее подходящего типа мутанта в соответствии с определенной целью. [c.10]

    Все эти мутации вызывают повышенную чувствительность к ультрафиолетовому свету (УФ) и ионизирующей радиации, образование слизистых колоний, неспособность к лизогенизации фагами X- и Р1, а также увеличивают стабильность нонсенс-фраг-ментов и фаговых мутантных белков (миссенс-белков). Чувствительность к УФ не связана с нарушением механизмов репарации (исправления дефектов) ДНК, а является следствием утраты способности к восстановлению клеточного деления после воздействия агентов, повреждающих ДНК. Поэтому мутанты Lon (Deg) после облучения образуют длинные нитевидные клетки, которые в конце концов лизируются. [c.53]

    Наконец рибосома присоединила последнюю аминокислоту, полностью закончив синтез полипептида, кодируемого мРНК. О терминации полипептида сигнализирует один из трех терминирующих кодонов мРНК, расположенный непосредственно за кодоном последней аминокислоты. Терминирующие триплеты UAA, UAG и UGA не кодируют никакую аминокислоту. Их называют бессмысленными триплетами (нонсенс-триплетами). Первоначально они были обнаружены при исследовании изменения одного-единственного нуклеотида в некоторых кодонах, соответствующих определенным аминокислотам. Это изменение приводило к возникновению нонсенс-мутанитов Е.соИ, для которых была характерна преждевременная терминация синтеза полипептидных цепей. С помощью таких нонсенс-мутантов, по- [c.941]


    Биохимические исследования жизненного цикла бактериофагов семейства 2 были в значительной степени дополнены работами по выделению и исследованию фаговых мутантов. Эти мутанты относились в основном к тем же двум условно-летальным типам, которые были использованы при построении кольцевой генетической карты Т-четных фагов а) чувствительные к температуре ( т ззеп5е ) мутанты, неспособные размножаться при повышенной температуре, при которой происходит развитие фага дикого типа, и б) ат6ег(нонсенс)-мутанты, способные размножаться только в клетках штаммов, несущих супрессорную мутацию, обеспечивающую-включение приемлемой аминокислоты в растущую полипептидную цепь под влиянием мутантного бессмысленного кодона УАГ (УАА или УГА). [c.474]

    Интеркаляция в свою очередь приводит к вставке или делеции нуклеотидов во время последующей репликации. В результате происходят мутации сдвига рамки, при которых в транскрибируемой молекуле мРНК закодированная информация, подлежащая трансляции, имеет сдвиг в рамке считывания. При этом нарушается последовательность аминокислот за участком вставки или делеции. Обычно сдвиг рамки ведет к появлению бессмысленного кодона (нонсенс-кодона), и поэтому фенотипически мутанты в данном случае сходны с нонсенс-мутантами, образованными в результате замены оснований в обоих случаях функция, затрагиваемая мутацией, полностью нарушается. [c.21]

    Л. Горини и другие исследовали явление фено1ипической супрессии нонсенс-мутаций Е. соИ при действии стрептомицина. Этот антибиотик связывается с рибосомами бактерий, что приводит к нарушениям в считывании генетического кода. Результатом этого может быть фенокопия нормы. Например, некоторые нонсенс-мутанты, несуш,ие нонсенс-кодоны в гене, контролирую-ш,ем биосинтез аргинина, могут расти на среде без аргинина, но в присутствии сублетальных доз стрептомицина. Различные мутации, изменяюш,ие белки рибосом, способствуют повышению уровня фенотипической супрессии (белки S4, S5, L7/L12) или понижению уровня фенотипической супрессии (S12, S17, L6). [c.448]

    Мутации типа нонсенс и миссенс впервые удалось разграничить благодаря генетическому тесту, использованному Бензером и Чеймпом (Benzer, hampe) в 1961 г. Существует вариант фага Т4, у которого делегирован промежуток между цистронами гПА и гПВ. В результате оба цистрона соединились воедино, и вместо двух отдельных белков синтезируется один слившийся белок. У этого белка сохраняется активность белка В, несмотря на соединение двух полипептидов. На рис. 4.7 показано, как можно различать нонсенс- и миссенс-мутации в гПА-области. Для этого нужно сконструировать двойной мутант, который кроме исследуемой мутации несет делецию, соединяющую цистроны А и В. Если в г//Л-области возникла миссенс-мутация, то активность г//В-цистрона не будет нарушена. Но если возникнет нонсенс- мутация, синтез белка остановится и полипептид В не синтезируется. [c.61]

    Транзиции и трансверсии часто приводят к мисденс-мутациям (мутациям с изменением смысла), поскольку вызывают замену в белке одной аминокислоты на другую. Если кодируемая мутантным геном аминокислота оказывается сходной с той, которая кодировалась геном дикого типа (т. е. исходным родительским геном), то возникает мутантный фенотип лишь с частично нарушенной функцией (1еаку-мутант). Часть мутаций с заменой оснований представляет собой нонсенс-мутации (бессмысленные мутации), которые обусловлены появлением кодонов, не кодирующих никакой аминокислоты. В этом случае синтез белка на измененном кодоне прерывается, а образующиеся незавершенные фрагменты белковой молекулы, как правило, функционально неактивны, в частности из-за быстрого их протеолиза. При протяженных делециях, удаляющих значительную часть гена, также синтезируются неактивные фрагменты белковых молекул. [c.71]

    По чувствительности к различным супрессорам нонсенс-мутации делятся на три класса. Исходный класс нон-сенс-мутаций, изолированных у фага Т4, был назван ам-бер-мутациями. Все эти мутации оказались чувствительными к однопу супрессору Е. соН. Анализируя способность мутантов фага размножаться на разных штаммах Е. соН, несущих амбер-супрессоры, обнаружили новый класс нонсенс-мутаций, названный охра-мутациями. Мутации типа охра не супрессируются амбер-суп-рессорами, а соответствующие им супрессоры называют охра-супрессорами. Интересно, что охра-супрессоры способны супрессировать и амбер- и охра-кодоны, что говорит о возможном сходстве этих типов нонсенс-мутаций. Позднее был обнаружен третий класс нонсенс-мутаций, которых назвали опал-мутациями. Опал-мутации не чувствительны ни к охра-, ни к амбер-супрессорам, а их супрессоры не действуют на кодоны-терминаторы типа охра и амбер . [c.61]

    Все рассмотренные случаи супрессии были исследованы на примере Е. соИ. У других бактерий (преимущественно у S. typhimurium) также были выделены похожие мутанты, и это свидетельствует о сходстве ситуаций во всех изученных случаях. Значительно меньше известно о распространенности и возможности супрессии нонсенс-и миссенс-мутаций у эукариот. Супрессоры охра- и ам-бер-мутаций, включающие тирозин, серин или лейцин, были выделены у дрожжей, причем каждый супрессор узнает только свой кодон. Возможно, это достигается благодаря использованию модифицированных оснований в антикодонах охра-супрессоров. [c.100]


    Мутации в четырех кластерах непосредственно влияют на активность белка-цитохрома Ь. Все мутанты такого рода синтезируют нормальную мРНК. Мутации проявляются на уровне трансляции и выражаются в считывании матрицы с ошибками типа миссенс или нонсенс . Ни одна из таких мутаций не комплементирует какую-либо другую в том же или другом кластере. По этому критерию все они находятся в одном и том же гене. Кластеры соответствуют некоторым экзонам, а именно box 4 = Bl, box 8 = ВЗ, box 1 = В4, box 6 = В6 (рис. 20.22). В двух других экзонах мутации не обнаружены, возможно вследствие их малых размеров (В2 = = 14п.н., В5=51 H.H.). Рассмотренные группы мутаций проявляют в точности такие же свойства, какие можно ожидать от прерывистых генов. Фактически это един- [c.258]

    Последовательное применение генетического анализа и рас-щрфровка первичной структуры генов вскрыли неожиданный факт перекрывания генов у некоторых вирусов. Так, у ряда РНК-содержащих бактериофагов Е. соИ (R17, f2, MS2, Q ) были известны всего три гена репликазы, белка оболочки и созревания вирусной частицы. Мутации каждого гена, например у фага MS2, некомплементарны между собой, но комплементарны мутациям остальных двух генов. После расшифровки полной нуклеотидной последовательности РНК этих фагов на ней были локализованы все три гена. Однако обнаружена и четвертая группа мутаций, блокирующих лизис зараженной клетки. Эти мутации образовали самостоятельную группу комплементации, т. е. на основе функционального критерия аллелизма они были отнесены к самостоятельному гену, для которого уже не оставалось места на РНК бактериофага. Тем не менее путем исследования белкового синтеза in vitro с использованием РНК фага в качестве и РНК было выявлено реальное существование белка L размером в 75 аминокислотных остатков, кодируемого этим новым геном. Локализовать его удалось благодаря тому, что один из мутантов по гену лизиса нес нонсенс UGA, идентифицированный по взаимодействию с соответствующими супрессорными тРНК. У этого мутанта была расшифрована первичная структура РНК. Оказалось, что UGA возник в результате замены С на U в кодоне GA (Apr). Таким образом была установлена фаза считывания триплетов в гене ли- [c.404]

    Как уже упоминалось, адсорбция фага А- осуществляется иа белке Lam В, контролирующем транспорт мальтозы и мальто-декстранов в клетку. Мутанты бактерий, ие адсорбирующие фага X дикого типа, относятся к двум группам. В первую группу входят. мутанты с существенными поврел дениями структуры белка Lam В, вызываемыми в основном нонсенс-мутациями и делениями. Такие мутации нарушают сразу все известные функции этого белка (адсорбцию разных фагов и транспорт углеводов). Во вторую группу входят миссенс-мутанты, возникающие путем замены отдельных аминокислот в белке. У таких мутантов некоторые свойства Lam В сохранены например, со- [c.199]


Смотреть страницы где упоминается термин Нонсенс-мутанты: [c.32]    [c.61]    [c.99]    [c.260]    [c.187]    [c.53]    [c.187]    [c.10]   
Основы биохимии Т 1,2,3 (1985) -- [ c.941 ]




ПОИСК







© 2025 chem21.info Реклама на сайте