Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ДНК количество кодирующих генов

    Очень часто чужеродные белки, особенно небольшие, обнаруживаются в гетерологичных хозяйских клетках лишь в минимальных количествах. Такой кажущийся низкий уровень экспрессии кодирующих их генов во многих случаях объясняется деградацией чужеродных белков в хозяйских клетках. Один из способов решения этой проблемы состоит в ковалентном присоединении продукта клонированного гена к какому-нибудь стабильному белку клетки-хозяина. В составе подобной конструкции, получившей название химерный белок , продукт клонированного гена оказывается защищенным от расщепления протеазами хозяйской клетки, что было показано в ходе экспериментов. [c.112]


    Сейчас считается установленным, что организм животного может синтезировать от 10 до различных молекул антител. Этот набор, по-видимому, достаточен для того, чтобы для любой антигенной детерминанты нашелся соответствующий антигенсвязывающий центр. Поскольку антитела являются белками, а их структура кодируется генами, встает вопрос о том, каким образом такое громадное количество различных антител может кодироваться в геноме. В 1965 г. В. Дрейером и Ж. Беннетом была сформулирована гипотеза, впоследствии блестяще подтвердившаяся, что вариабельные и константные участки цепей иммуноглобулинов кодируются разными генами. Все гены вариабельных участков расположены кластером в одной области генома, а гены константных участков — в другой, далеко отстоящей от первой. Выяснилось также, что имеются еще две группы генов J и D (для тяжелых цепей), кодирующие небольшие участки (несколько аминокислот) полипептидной цепи иммуноглобулинов, лежащие между V- и С-областями. В таком виде гены находятся в зародышевой ДНК в процессе дифференцировки [c.216]

    Одинаковая длительность фазы S в одном случае у гаплоида и диплоида, в другом случае у диплоида и тетраплоида-это не столь уж и удивительно. Если отдельные хромосомы и области внутри хромосом реплицируются в определенном порядке, to при уменьшении вдвое или удвоении числа хромосом порядок репликации не должен изменяться. Соотношение между числом генов, ответственных за механизм репликации (кодирующих ДНК-полимеразы, геликазы, факторы инициации и т.д.), и общим количеством ДНК также сохраняется. Напротив, у разных организмов соотношение между количеством этих генов и содержанием ДНК скорее всего варьирует, и этим может объясняться корреляция, на которую указывают данные в табл. 13-1. [c.474]

    Многие белки, синтезирующиеся в больших количествах, кодируются уникальными генами [c.144]

    Среди них присутствие в клетках клубеньков легоглобина — гем-содержащего белка, который встраивается в мембрану бактероида (увеличенная в размере бактериальная клетка, характеризующаяся наибольшей способностью к фиксации азота) и регулирует поступление кислорода. Легоглобин кодируется в геноме растительной клетки-хозяина, но его синтез начинается только после проникновения бактерий в эту клетку. У цианобактерий механизм защиты нитрогеназы от кислорода иной. Азотфиксация идет в гетероцистах, а фотосинтез — в обычных клетках. Поэтому кислород, вьщеляющийся в процессе фотосинтеза, не ингибирует фиксацию азота. Таким образом, введение только //-генов в какую-то растительную клетку не решает проблемы. Если нитрогеназа будет синтезироваться в этой клетке, в частности в клетках злаков, то она разрушится под действием кислорода, присутствующего в клетке. Кроме того, сама клетка, в которую переносят гены азотфиксации, может бьггь не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота. [c.153]


    Большое количество исследований было посвящено химическому синтезу гена, кодирующего ЛИЧ из 166 аминокислот. Соответственно, данный ген из 514 н. п. оказался самым крупным ге ном, синтезированным в 1982 г. группой английских ученых. В Рог сии в 1984 г. был осуществлен полный синтез гена а-И размере  [c.143]

    Допустим, что средняя белковая молекула — это свернутая це почка, состоящая из 300 аминокислот. Стало быть, участок молекулы ДНК (один ген), кодирующий синтез этого белка, должен включать около 900 пар нуклеотидов. Добавив сюда еще некоторое количество, нуклеотидов для образования промежутков между генами, мы получим что число нуклеотидных пар, составляющих 1 ген, в среднем равно 1000. [c.18]

    В результате проведенных исследований было установлено, что в молекулах ДНК бактериофагов почти все последовательности нуклеотидов уникальны, т. е. встречаются один раз. В ДНК бактерий большинство генов также уникальны, но некоторые последовательности (кодирующие транспортные и рибосомные РНК) повторяются по нескольку раз. В геноме эукариотов уникальные последовательности нуклеотидов, т. е. структурные гены, несущие информацию о структуре специфических белков, составляют около 60% ДНК. Остальную часть ДНК составляют повторяющиеся последовательности. От 10 до 25% генома животных представлено умеренно повторяющимися последовательностями. Они являются структурными генами продуктов, необходимых ктетке в больших количествах. Это гены рибосомных и транспортных РНК, белков гистонов, отдельных цепей иммуноглобулинов. Они, как правило, расположены в ДНК в виде тандемных повторов, т. е. друг за другом, один ген отделяется от другого спейсером (от англ. spa er — промежуток). В группу умеренно повторяющихся последовательностей входят также участки ДНК, выполняющие регуляторные функции. Кроме того, в ДНК эукариот встречаются часто повторяющиеся последовательности (10 —10 раз). В основном это сате-литная ДНК, обнаруживаемая в центромерных областях хромосом, участвующая, по-видимому, в спаривании и расхождении хромосом. [c.178]

    Непрямые данные были получены прн изучении антиидиотипнческнх антител. Как уже говорилось, можно получить антитела, которые узнают антигенные детерминанты антиген-связывающих участков других антител такие детерминанты называются идиотипами. Антиидиотипические антитела, способные реагаровать с антиген-связывающим участком растворимого антитела к некоторому антигену X, будут связываться не только с анти-Х-антитела-ми в растворе, но также и с В-клетками, имеющими на своей поверхности те же самые антитела (как рецепторы для антигена X). Неудивительно, что присоединение антиидиотипических антител к этим рецепторам на поверхности В-клеток может ингибировать способность В-клеток узнавать антиген X н отвечать на него. Было показано, что в некоторых случаях антиидиотипические антитела связываются с Т-клвткамн н тоже ингибируют их способность отвечать на антиген X (рнс. 17-55). Генетические исследования позволяют предполагать, что идиотипы, общие для рецепторов В- н Т-клеток, могут кодироваться генными сегментами, определяющими вариабельные области Н-цепей иммуноглобулинов. Антиидиотипические антитела были использованы для выделения малых количеств рецепторов нз плазматических мембран Т-клеток. Хотя эти рецепторы состоят нз полипептидов, сходных по размерам с обычными Н-цепями, они не реагируют с антителами к константным областям каких-либо известных Н- или L-цепей иммуноглобулинов. Эти данные наводят на мысль, что рецепторы Т-клеток могут представлять собой какой-то новый класс Н-цепей, кодируемый специальным набором генов константной области н, возможно, некоторыми генными сегментами, кодирующими Ун-области обычных антител Этой гипотезе противоречит то, что в экспериментах с нспользованнем техники рекомбинантной ДНК не удалось [c.51]

    Новые вакцины. Многие годы в методах создания вакцин особого прогресса не наблюдалось, однако недавние открытия в области молекулярной биологии и генной инженерии позволили и в этом деле разработать новые подходы. Антигены чаще всего представляют собой белки, т. е. кодируются генами. Если такой ген ввести в бактерию стандартным методом, описанным в гл. 12, то ее можно превратргть в своего рода живую фабрику по производству больших количеств антигена, который будет стимулировать образование нужных антител. Таким способом уже готовят вакцины против холеры, брюшного тифа и гепатита В. В некоторых случаях это снижает опасность прививок, например против коклюша. Другой способ — химический синтез антигенов из аминокислот, если известна их аминокислотная последовательность. [c.181]

    SOS-система — это не единственная индуцируемая система репарации у . соИ. Совершенно другой набор генов индуцируется в ответ на алкилирующие соединения. Как было сказано, часть повреждений, вызываемых в ДНК этими соединениями, репарируется за счет прямой реактивации метилтрансферазой, которая сама при этом инактивируется. Оказалось, что алкилированная метилтрансфе-раза служит активатором транскрипции и повышает активность ряда генов, в том числе собственного гена ada и гена alkk, кодирующего ДHK-N-гликoзилaзy, специфичную к алкилированным основаниям. Обработка клетки небольшими количествами алкилирую-щих соединений вызывает 30-кратное увеличение уровня метил трансферазы и предотвращает гибель клеток под действием существенно больших доз алкилирующих мутагенов. [c.81]


    Дупликации генов обычно объясняют редкими событиями, которые катализируются некоторыми рекомбинационными ферментами. Однако у высших эукариот имеется эффективная ферментативная система, которая соединяет концы разорванной молекулы ДНК. Таким образом, дупликации (а также инверсии, делеции и транслокации сегментов ДНК) могут возникать у этих организмов вследствие ошибочного воссоединения фрагментов хромосомы, которая по каким-то причинам оказалась разорванной. Если дуплицированные последовательности соединяются голова к хвосту , то говорят о тандемных повторах. Появление одного тандемного повтора легко может привести к возникновению их длинной серии в результате неравного кроссинговера между двумя сестринскими хромосомами, поскольку длинные участки спаривающихся последовательностей представляют собой идеальный субстрат для обычной рекомбинации (рис. 10-63). Дупликация ДНК и следующий за ней неравный кроссинговер лежат в основе амплификации ДНК, процесса, который, как выяснилось, способствует возникновению раковых клеток (см. рис. 21-26). В ходе неравного кроссинговера число тандемно повторяющихся генов может как увеличиваться, так и уменьшаться (см. рис, 10-63). Большое количество повторяющихся генов будет поддерживаться естественным отбором лишь в том случае, если существование дополнительных копий окажется выгодным для организма. Как отмечалось выше, у позвоночных тандемный повтор кодирует большой предшественник рибосомной РНК, что необходимо для обеспечения потребности растущих клеток в новых рибосомах (см. разд. 9.4.16) Кластеры тандемно повторяющихся генов кодируют у позвоночных и другие структурные РНК, включая 58-рРНК, 111- и и2-мяРНК. Тандемные повторы характерны и для гистоновых генов, на которых синтезируется большое количество белка, требующегося в каждой 8-фазе. [c.237]

    Остаются нерешенными вопросы, может ли вообще происходить кроссинговер в дистальных районах акроцентрических хромосом и не является ли акроцентрическая локализация защитным механизмом против отклонения от оптимального количества рРНК-генов за счет неравного кроссинговера Гены, кодирующие иммуноглобулины (разд. 4.4), также являются повторяющимися последовательностями ДНК. Чем больше мы узнаем о функциональном значении повторяющихся последовательностей ДНК, тем лучше будем понимать роль неравного кроссинговера. [c.230]

    Ранние работы по картированию генов с использованием эффекта дозы генов. Обычно при аутосомно-рецессивных аномалиях ферментов их активность у гетерозигот близка к величине, средней для фенотипов двух типов гомозигот. В тех случаях, когда активность фермента у мутантных гомозигот близка к нулевой, у гетерозигот обычно наблюдается примерно 50%-пая активность (разд. 4.2.2.8). Это означает, что в норме ферментативная активность прямо отражает количество синтезированного белка и нет никаких специальных механизмов, корректирующих интенсивность синтеза до нормального у таких гетерозигот. Поэтому вполне логично было бы предположить, что активность ферментов, которые кодируются генами, локализованными в трисомных хромосомах или их сегментах, должна в полтора раза превышать активность у гомозигот. По этой же причине [c.133]

    За счет использования компактных невирусных ARS-элементов (составляющих не десятки, а несколько тысяч п. п.) представляется возможным создание безопасных челночных векторных конструкций, которые можно получать в препаративных количествах в Е. oli и которые способны нести достаточно протяженные целевые последовательности ДНК, кодирующие генно-терапевтический продукт или несколько таких продуктов. [c.242]

    Кодирующий ген можно клонировать в мультикопийные плазмидные векторы. Тогда клетка может содержать до 50 копий таких плазмид, следовательно, представляющий интерес ген будет присутствовать в ней в большом числе копий и может произвести большее количество требуемого продукта. [c.96]

    Важно уяснить, что именно основания, пуриновые или пиримидиновые, являются носителями генетической информации, подобно тому как боковые цепи аминокислот определяют химические и функциональные свойства аминокислоты. Носитель наследственной информации — молекула ДНК — организована в клетке в структурные единицы — гены. Эти последние в свою очередь локализованы в особых структурах — хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую специфический признак цвет глаз и волос, рост, пол и т. д. Однако для описания на молекулярном уровне ген — довольно сложное образование, так как число молекулярных стадий при реализации конкретного признака может быть весьма велико. Отметим, что любой генетический признак реализуется с помощью белкового синтеза (структурного белка либо фермента), и введем понятие более простого элемента — цистрона. Цистрон определяют как часть ДНК, которая несет генетическую информацию (кодирует) о синтезе лищь одной полипептидной цепи. Хромосома содержит много сотен цистронов. Все количество ДНК, содержащееся в клетке, называется геномом. [c.108]

    Транскрипцию генов рибосомных РНК, тРНК и большинства генов, кодирующих белки, обеспечивают молекулы РНК-полимеразы, содержащие главную а-субъединицу (молекулярная масса у Е. oli 70 кД, у Вас. subtilis— 43 кД). На несколько тысяч молекул РНК-полимеразы, имеющихся в бактериальной клетке, приходится примерно тысяча молекул главной а-субъединицы. В меньших количествах имеются минорные а-субъединицы, используемые для транскрипции ограниченного числа генов (см. раздел 3 этой главы). Набор минорных а-субъединиц у разных бактерий неодинаков. По размеру они меньше главной а-субъединицы. Сравнение нуклеотидных последовательностей генов разных а-субъединиц свидетельствует о том, что все они произошли от одного предкового гена. [c.135]

    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]

    Регулируемые терминаторы бактерий называют аттенюаторами (ослабителями). Впервые обнаружен и лучше других изучен аттенюатор триптофанового оперона Е. соИ. Этот оперон состоит из пяти генов, кодирующих ферменты биосинтеза триптофана. Регуляцию осуществляют две системы, чувствующие потребность клетки в триптофане. Первая система влияет на эффективность инициации на промоторе оперона. Репрессор триптофанового оперона в комплексе с триптофаном присоединяется к оператору, расположенному перед стартовой точкой транскрипции в районе —10 , и стерически препятствует РНК-полимеразе присоединяться к промотору. Таким образом, при избытке триптофана оперон репрессирован. В отсутствие триптофана репрессор теряет способность связываться с оператором, в результате чего оперон индуцируется. Эту систему дополняет регуляция в аттенюаторе, расгГоложенном на расстоянии 180 п. н. от стартовой точки транскрипции внутри <оидерной последовательности, предшествующей инициирующе.му кодону первого структурного гена. В условиях избытка триптофана лишь одна из десяти молекул РНК-полимеразы, начавших синтез РНК на триптофановом промоторе, преодолевает этот терминатор и переходит в область структурных генов. При уменьшении количества триптофана доля молекул РНК-полимеразы, преодолевающих аттенюатор, возрастает. [c.158]

    Местообитанием некоторых штаммов грамотрицательных облигатных аэробных бактерий Vitreos illa являются сильно обедненные кислородом непроточные водоемы. Чтобы получать нужное количество кислорода для роста и метаболизма, они синтезируют гемоглобиноподобное вещество, связывающее кислород окружающей среды и увеличивающее концентрацию доступного кислорода в клетке. Когда ген, кодирующий этот белок, был введен в клетки Е. соИ, в последних сразу произошли серьезные изменения повысился уровень синтеза клеточных и рекомбинантных белков, возросла эффективность протонных насосов, увеличилось количество образующегося АТР и его концентрация, особенно при низком содержании кислорода в среде. Чтобы такую стратегию можно было ис- [c.122]


Смотреть страницы где упоминается термин ДНК количество кодирующих генов: [c.488]    [c.324]    [c.408]    [c.138]    [c.126]    [c.131]    [c.54]    [c.256]    [c.39]    [c.123]    [c.87]    [c.305]    [c.75]    [c.114]    [c.408]    [c.81]    [c.158]    [c.207]    [c.210]    [c.217]    [c.85]    [c.244]    [c.122]    [c.66]    [c.207]    [c.210]    [c.217]   
Гены (1987) -- [ c.280 ]




ПОИСК







© 2025 chem21.info Реклама на сайте