Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы переноса в эластомера эластомерах

    Включая в книгу разделы о механических свойствах и процессах переноса в эластомерах, а также раздел по переработке каучуков и резиновых смесей, авторы надеются в какой-то мере вое-, полнить пробел, связанный с отсутствием книг или монографий, [c.7]

    ПРОЦЕССЫ ПЕРЕНОСА В ЭЛАСТОМЕРАХ [c.344]

    Сорбционно-диффузионные процессы в эластомерах имеют ряд особенностей по сравнению с обычными полимерами. В эластомерах макромолекулы имеют большую гибкость и перенос других частиц более облегчён. [c.114]


    При исследовании процессов переноса теплоты в эластомерах, процессов массопереноса в пластиках, коллоидных телах и некоторых пористых структурах обнаруживаются отклонения от законов Фурье и Фика, которые [c.31]

    Энергия активации диффузии Ев представляет собой энергию, необходимую для проведения одного моля молекул газа через элементарный процесс. Вероятно, Ев можно рассматривать ка> работу разделения цепей, в связи с чем значение Ев увеличивается с ростом размеров молекул газа . Согласно теории зон Баррера перенос молекулы газа в эластомере может иметь место, когда концентрация тепловой энергии становится достаточной для разделения локализованных цепей и [c.115]

    Исследования массопереноса газов, паров, жидкостей и других веществ через каучуки и резины часто являются важной технической задачей. Они необходимы для разработки уплотнительных материалов, диафрагм, покрытий, а также материалов для контейнеров, оболочек аэростатов, газгольдеров, баков, лодок, спасательного имущества, шлангов, камер автошин и многих других надувных изделий из резины или прорезиненных тканей. Такие исследования имеют и весьма существенное научное значение. В частности, изучение диффузии и растворимости позволяет судить о структуре эластомеров и характере теплового движения макромолекул. Перенос низкомолекулярных веществ в полимерах играет основную роль при изучении многих процессов, протекающих при изготовлении и эксплуатации резиновых изделий, например при вулканизации и окислении резин, при действии на резины агрессивных паров, жидкостей и др. Вопросы массопереноса в каучуках и резинах рассмотрены в ряде монографий и обзоров [1-5]. [c.344]

    Интерпретация процесса диффузии с точки зрения теории переходных состояний и кинетической теории [8] в равной степени приводит к тому, что элементарный акт диффузии в эластомерах должен быть обязательно связан с наличием значительной зоны активации. Согласно теории зон Баррера [8] перенос [c.348]

    Значительное уменьшение изменений в строении и свойствах полимеров в результате действия ионизирующего излучения достигается путем модификации (внутренняя защита) или путем введения в них защитных добавок — антирадов (внешняя защита). Внутренняя защита проявляется в сополимерах, содержащих в своем составе ароматические группы (например, в бутадиен-стирольных каучуках), и обусловлена процессами внутримолекулярного переноса энергии возбуждения и рассеяния ее фенильными кольцами. Представление о внутренней защите может быть исиользовано при синтезе новых полимеров с повышенной стойкостью к действию ионизирующего излучения. Радиационная защита пластиков и эластомеров (в основном ненасыщенных) осуществляется главным образом с помощью защитных добавок. [c.163]


    Растворимость и перенос в аморфных эластомерах, по-видимому, совершенно подобны протеканию соответствующих процессов в низкомолекулярных жидкостях, если учесть вязкоупругие свойства среды. Например, Баррер [24, 32, 34] показал для сорбции газов и паров, что энтропии растворения в эластомерах на несколько энтропийных единиц более отрицательные, чем для случая растворения в соответствующем мономере. Однако фактические растворимости почти такие же в каучуках и низкомолекулярных органических жидкостях, так что различие между свободными энергиями растворов мало. [c.243]

    Если определить модель по требованиям экономичности работы с ней и возможности переноса данных на оригинал, то в конце концов несущественно, какими средствами это достигается. Так возникает математическая модель. Такая модель в простейших случаях бесспорно выгодна гораздо проще и дешевле считать, чем моделировать и экспериментировать. Однако по мере усложнения процессов усложняются и их модели, и наступает момент, когда точные расчеты делаются не под силу ни человеку, ни даже машине (ЭВМ). Особо сложные математические модели и описывающие их системы нелинейных дифференциальных уравнений (например, для процесса смешения эластомеров [62]) могут успешно решаться с разумной точностью с помощью аналоговых вычислительных машин (АВМ) с соответствующей подстройкой по данным лабораторного эксперимента коэффициентов интегросуммирующих и функциональных блоков, [c.47]

    Несмотря на большое практическое значение процессов переноса в условиях воздействия на полимерные диффузионные среды высоких давлений, эта проблема вплоть до настоящего времени оставалась наименее изученной. В работах [73, 117— 123] рассмотрены вопросы кинетики сорбции и проницаемости сжатых газов, фреонов, низкомолекулярных жидкостей через полимерные стекла и эластомеры. Однако характер полученных результатов, выбор объектов и условий исследования позволяют предполагать, что интересующий нас эффект, связанный с влиянием давления на диффузионные характеристики полимерных матриц, либо экспериментально не наблюдался, либо оказывался завуалированным пластификацией полимера газообразными веществами, либо не учитывался вообще, как, например, в [119, 120, 123]. Это вызвано двумя причинами. Во-первых, относительно небольшим интервалом изменения давления в условиях эксперимента, что связано с ограниченными возможностями использованной аппаратуры. Во-вторых, спецификой организации и проведения опытов, когда сжимающее низ комолекуляр-ный компонент давление неминуемо приводило к увеличению его растворимости в полимерном теле, а следовательно, и целой дополнительной гамме сопутствующих эффектов. Так, в [124] описано возрастание коэффициента газопроницаемости (Р) мембран из ПТФЭ при увеличении давления газа (рис. 2.35). Этот результат получен для необычного режима проведения диффузионного эксперимента (дифференциального), при котором разность давле.ний (Ар) по обе стороны мембраны поддерживается во всех опытах постоянной, а общее давление непрерывно возрастает. В работах [125—126] этот режим применительно к проблеме паропроницаемости назван сканированием по изотерме сорбции . Для обычного — интегрального режима, при котором перепад давления Ар меняется с изменением внешнего давления рь Р с ростом р1 уменьшается. Однако систематических измерений влияния давления, воздействующего избирательно на диффузионную среду, в полимерных системах практически не проводилось. [c.60]

    В общем, перенос-газов или паров в среде, состоящей из двух и более компонентов, представляет сложное явление, зависящее от природы и характера взаимодействия компонентов и процессов на границе раздела фаз. Благодаря аномальному распределению пенетранта в таких системах концентрационная и температурная зависимости параметров переноса отличаются от таковых для гомогенной среды. Особый интерес представляют случаи фиксированного градиента химической или структурной неоднородности в мембране, обусловленные различными плотностью сшивок, кристалличностью, концентрацией функциональных групп и т. п. Ч Азотопроннцаемость смесей натурального каучука с некоторыми синтетическими эластомерами была изучена [c.178]

    Мембраны, применяемые для процесса первапорации, представляют собой асимметричные или композиционные мембраны. Как и в случае мембран для газоразделения, пористая под)южка должна иметь открытую пористую структуру для уменьшения сопротивления переносу пара и предотвращения капиллярной конденсации. Существенное требование, предъявляемое к пер-вапорационным мембранам, — это устойчивость материалов мембраны к компонентам разделяемой смеси при повышенных температурах. Сравнительно высокие температуры жидкой смеси необходимы для поддержания достаточно большой движущей силы процесса испарения через мембрану, которой является разность парциальных давлений паров компонентов разделяемой смеси по разные стороны от мембраны. Выбор полимерного материала в значительной мере зависит от того, для решения какой задачи предназначена мембрана. В отличие от газоразделения, при испарении через мембрану эластомеры в результате сильного набухания могут обладать не большими проницаемостями, чем стеклообразные полимеры. К полимеру предъявляются два противоречивых требования. С одной стороны, мембрана не должна набухать слишком сильно во избежание существенного уменьшения селективности. С другой стороны, при низкой растворимости выделяемого компонента в полимере и недостаточном набухании слишком низким оказывается поток вещества через мембрану. Полимеры, имеющие аморфную структуру (стеклообразные полимеры или каучуки), могут оказаться [c.432]



Смотреть страницы где упоминается термин Процессы переноса в эластомера эластомерах: [c.8]    [c.103]   
Физико-химические основы получения, переработки и применения эластомеров (1976) -- [ c.349 , c.350 ]




ПОИСК





Смотрите так же термины и статьи:

Эластомеры



© 2025 chem21.info Реклама на сайте