Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен-стирольные каучуки СКС вулканизаты

Таблица 9. Влияние содержания полиэтилена низкого давления на свойства вулканизатов на основе бутадиен-стирольного каучука Таблица 9. <a href="/info/403306">Влияние содержания</a> полиэтилена <a href="/info/54918">низкого давления</a> на <a href="/info/22670">свойства вулканизатов</a> на <a href="/info/1682468">основе бутадиен-стирольного</a> каучука

    Бутадиен-стирольные каучуки с минимальным содержанием примесей, поглощающих воду, по диэлектрическим свойствам равноценны натуральному каучуку. По водостойкости и газопроницаемости резины из бутадиен-стирольных каучуков практически равноценны резинам из натурального каучука. Вулканизаты из бутадиен-стирольных каучуков достаточно стойки к действию крепких и слабых кислот, щелочей, спиртов, эфиров, кетонов и пр. Набухают в бензине, бензоле, толуоле, четыреххлористом углероде, в растительных и животных маслах и жирах. В бензине и бензоле бутадиен-стирольные каучуки меньше набухают, чем натуральный каучук. [c.267]

    Вулканизаты из бутадиен-стирольных каучуков значительно меньше сохраняют значения сопротивления разрыву, относительного удлинения и сопротивления раздиру при повышенных температурах (100°С) и характеризуются менее высокой эластичностью, более высокими механическими потерями и повышенным теплообразованием по сравнению с вулканизатами из натурального каучука, а также уступают им по сопротивлению многократным деформациям изгиба, растяжения, сжатия и разрастанию трещин и текучести. [c.266]

    Смешение ХБК с бутадиен-стирольным каучуком улучшает озоностойкость последнего, особенно при смоляной вулканизации. Серная вулканизация обеспечивает высокую прочность вулканизатов. При вулканизации веществами — донорами серы получают вулканизаты с хорошими эластичностью, стойкостью к многократному изгибу и теплостойкостью. Во всех случаях в смеси вводят оксид цинка. [c.187]

Рис. 53. Физико-механические свойства вулканизатов бутадиен-стирольного каучука, усиленного анилино-формальдегидной смолой на стадии Рис. 53. <a href="/info/1005693">Физико-механические свойства вулканизатов</a> бутадиен-стирольного каучука, усиленного <a href="/info/684362">анилино-формальдегидной смолой</a> на стадии
    Другие синтетические каучуки. С бутадиен-нитрильным каучуком высокостирольные полимеры совмещаются во всех соотношениях и свойства вулканизатов изменяются так же, как в случае применения бутадиен-стирольных каучуков. Усиливающийся эффект таких полимеров зависит от содержания нитрильных групп в каучуке 2 2. Особенно высокие прочностные показатели получены при 40%-ном содержании нитрильных групп в каучуке. При введении свыше 20 вес. ч. высокостирольного полимера снижается сопротивление разрыву у ненаполненного вулканизата, а сопротивление раздиру, модуль, относительное удлинение, твердость и жесткость вулканизатов с увеличением содержания указанного полимера возрастают неограниченно Для каучука СКН-26 эффект усиления высокостирольными полимерами больше и создается возможность введения в такой каучук повышенного количества высокостирольной смолы. Физико-механические свойства изменяются аналогично случаю применения бутадиен-стирольного каучука в то время как при использовании каучука СКН-40 показатели изменяются так же, как у смесей с НК. [c.50]


    При введении в смесь бутадиен-стирольного каучука (СКС-ЗОАРК) 5—10 вес. ч. резорцино-формальдегидной смолы, 5—10 вес.ч. резотропина повышается прочность вулканизата до 170 кгс см , а сопротивление истиранию достигает 100— см 1 квТ Ч). Вулканизаты с резорцино-формальдегидной или эпоксиаминной смолой при повышенной температуре более прочны, чем сажевые вулканизаты. Применение эпоксиаминной смолы ма )ки 89 в 2—3 раза повышает прочность вулканизата при 100° С по сравнению с сажевыми резинами. Такое явление объясняется возникновением химических связей между смолой и каучуком и меньшим влиянием межмолекулярного взаимодействия на процесс усиления. Эти выводы подтверждаются также высоким содержанием геля, большей скоростью релаксации и большим значением равновесного модуля вулканизатов со смолой [c.117]

    А. С. Кузьминский, М. Е. Майзельс, Хим. пром., № 3, 77 (1950), Причины разрушения вулканизатов бутадиен-стирольного каучука при многократных деформациях. [c.219]

    М. Е. Майзельс, НИН рез. пром. (1950). Исследование влияния многократных деформаций на утомление вулканизатов бутадиен-стирольного каучука. [c.229]

    Полиэтилен низкого давления способствует повышению физико-механических показателей вулканизатов (табл. 9), ухудшает эластичность, остаточное сжатие и теплообразование Несмотря на увеличение жесткости вулканизатов, ПЭНД имеет ряд преимуществ перед ПЭВД, он сообщает выносливость при многократных деформациях в среде воздуха и озона (рис. 26), снижает динамический модуль при знакопеременном изгибе. Все это указывает на лучшую работоспособность резин на основе бутадиен-стирольного каучука при небольшом содержании ПЭНД [c.58]

    По стойкости к многократным деформациям вулканизаты ХБК превосходят резины из бутадиен-стирольного каучука и близки к резинам на основе НК, с которым их можно сравнить и по теплообразованию. [c.188]

    Полиэтилен с более высокой температурой размягчения способствует увеличению теплостойкости вулканизатов. У вулканизатов на основе бутадиен-стирольного каучука с полиэтиленом низкого давления эти показатели выше, чем у подобных вулканизатов с полиэтиленом высокого давления и у ненаполненных резин. Усиливающий эффект полиэтилена значительно снижается в присутствии других усилителей. [c.59]

    Аналогичные исследования были проведены для ряда бутадиеновых, бутадиен-стирольных и других каучуков, полученных в различных условиях. Для большей части исследованных полимеров наблюдается обычный характер зависимости прочности вулканизатов от молекулярной массы. Зависимость разрушающего напряжения от молекулярной массы для бутадиен-стирольных каучуков и для бутадиеновых каучуков, полученных полимеризацией в жидкой фазе при различных температурах, выражается кривыми, характерными для полимеров данного типа. Макромолекулы бутадиеновых каучуков, полученных при температурах 283—343 К, практически не различаются степенью разветвленности. Вероятно, поэтому для [c.174]

    В литературе описано применение полиэтилена и бутадиен-стирольного каучука для протекторных резин Для ездовых камер в наполненных сажей смесях на основе бутилкаучука часть сажи может быть заменена полиэтиленом, в результате чего повышается эластичность вулканизатов при сохранении остальных показателей. При этом улучшаются технологические свойства сырых резиновых смесей снижается текучесть и усадка в процессе вулканизации [c.61]

    Хорошие результаты дает использование атактического полипропилена в качестве добавки для улучшения пластичности, клейкости поверхности при каландрировании и снижения усадки сырых резиновых смесей на основе бутадиен-стирольного каучука и полибутадиена Введение не более 12 вес. ч. атактического полипропилена в смеси из наирита обеспечивает хорошие технологические свойства, уменьшает липкость к валкам и практически не снижает физико-механические свойства вулканизатов, динамические свойства, а истираемость при этом снижается [c.63]

    На рис. 43 приведено изменение физико-механических показателей вулканизатов СКС-ЗОА от содержания такой смолы. При увеличении содержания смолы свыше 20 вес.ч. снижается не только прочность, модули и сопротивление раздиру, но и относительное и остаточное удлинения. Такое явление объясняется ограниченной взаимной растворимостью бутадиен-стирольного каучука с поверхностью частицы фенольной смолы. Увеличение содержания смолы свыше оптимального значения приводит, к тому, что смола плохо диспергируется и ее частицы служат лишь Очагом разрушения. [c.103]

    Введение в бутадиен-стирольные каучуки резольную феноло-анилино формальдегидную смолу способом термореактивных маточных смесей увеличивает прочность и придает вулканизатам большую эластичность, морозостойкость, выносливость к многократному растяжению, стойкость к воздействию температуры и агрессивных сред, чем при введении неорганических наполнителей (табл. 13) [c.108]


    В прочности и сопротивлении раздиру (табл. 17). Кроме того, вулканизаты бутадиен-стирольного каучука с аминопластами обладают низкой устойчивостью к разрастанию трещин и характеризуются чрезмерным теплообразованием при испытании на флексо-метре. [c.121]

    Чаще всего для подготовки образцов применяют процедуру пиролиза, которая удобна и при изучении вулканизатов, наполненных техническим углеродом. Кроме того, для изучения состава смесей натурального, хлорированного, изобутилен-изопренового и бутадиен-стирольного каучуков могут быть использованы образцы в виде тонких пленок. При исследовании смесей бутадиен-стирольного и бутадиенового каучуков образцы кипятят в о-дихлорбензоле, а затем из раствора отливают пленки для ИК анализа. При сопоставлении трех способов подготовки образцов пиролиза (550-650 °С), частичного разложения (200 °С) и растворения в о-дихлорбензоле (ОДХБ) - показано, что процедура пиролиза наиболее проста, но в ИК-спектре продукта может исчезнуть ряд характеристических полос (например, для бутадиенового каучука). Растворение в ОДХБ признано наилучшим универсальным методом для характеристики смесей, кроме тех случаев, когда для разложения основного компонента смеси требуется слишком длительное время относительно других компонентов. Это наблюдается при высоком содержании в смеси каучуков типа хлорсульфированного полиэтилена, хлорированных и фторированных полимеров и каучуков, менее стойких к действию растворителей. [c.565]

Рис. 1.6. Кривые распределения разрушающего напряжения вулканизатов бутадиен-стирольного каучука Рис. 1.6. <a href="/info/6103">Кривые распределения</a> разрушающего напряжения вулканизатов бутадиен-стирольного каучука
    Влияние температуры на разрушающее напряжение полимеров хорошо изучено [4 9, с. 474 13, 233 364, с. 318 368, с. 144]. Технологов в большинстве случаев интересует влияние температуры на разрушающее напряжение и максимальное относительное удлинение, определяемые при сравнительно малых скоростях деформации. В качестве примера, иллюстрирующего влияние температуры на прочность типичного некристаллизующегося эластомера, рассмотрим поведение вулканизата бутадиен-стирольного каучука в широком интервале температур при обычно используемых скоростях деформации. [c.152]

    Аналогичные закономерности наблюдаются для бутадиен-стирольных каучуков, содержащих карбоксильные группы. При вулканизации оксидами металлов эти каучуки приобретают высокую статическую прочность, которая объясняется подвижностью вулканизационных связей. Способность этих связей к перегруппировкам благоприятствует релаксации местных напряжений, возникающих при деформации вулканизата, что отчетливо проявляется в опытах по изучению релаксации напряжений. Б. А. Догадкин считал, что при понижении напряжения до нуля в результате релаксации степень поперечного сшивания не меняется, т. е. уменьшение напряжения связано не с распадом вулкани- [c.207]

    Мураками сопоставил [39] результаты определения концентрации поперечных связей Пс по значениям С[ ( с, деф) и по значениям равновесного набухания ( с.наб) для вулканизатов бутадиен-стирольного каучука и НК. Оказалось, что при Лс<4,2-10 моль/см для вулканизатов НК и Пс< 5,5-Ю-" моль/см для вулканизатов бутадиен-стирольного каучука Ис, деф> с, наб-Для более густых сеток Лс, наб > с, деф- причиной отклонений являются, по мнению авторов, недостатки деформационного метода, не учитывающего дефекты сетки (при низких с) и негауссово поведение цепей из-за их конечной растяжимости (при больших Пс). [c.30]

Таблица 2.1. Влияние концентрации МАМ на превращения соли в вулканизатах бутадиен-стирольного каучука Таблица 2.1. <a href="/info/6816">Влияние концентрации</a> МАМ на <a href="/info/627184">превращения соли</a> в вулканизатах бутадиен-стирольного каучука
    Свойства вулканизатов на основе бутадиен-стирольного каучука растворной и эмульсионнной полимеризации приведены ниже  [c.281]

    Кавабата и др. [6] исследовали статистику разрушения саженаполненного вулканизата бутадиен-стирольного каучука (БСК). Они пришли к заключению, что либо коэффициент связи напряжения и скорости ослабления материала растет со временем, либо еще до разрушения вулканизата каучука возникает несколько локальных очагов разрушения. Наилучшее совпадение теории с экспериментом получено для критического числа 3—4 микроскопических очагов разрушения как зародышей образования нестабильной трещины. Для несимметричного распределения долговечности (рис. 3.2) соотношение (3.5) также не выполняется при больших значениях т т 2). Это означает, что либо плотность вероятности ослабления материала труб /С меньше для образцов, имеющих больший срок службы, либо К зависит от времени нагружения. В первом случае приходится предполагать, что с самого начала образцы были статистически не идентичными, а во втором, что они подвержены структурным изменениям, влияющим на К. По-видимому, [c.62]

    БК хорошо совмещается со многими полиолефинами, в частности полиэтиленом, ПИБ, сополршерами этилена, стирола, изобутилена и др. [1,2,17]. Для улучшения морозостойкости вулканизатов БК используют комбинации с эти-ленпропиленовым каучуком, а для повышения химической стойкости - с полиэтиленом. Смеси БК с натуральным, бутадиен-стирольным, этиленпропилено-вым тройным и бутадиен-стирольным каучуками применяются для изготовления деталей шин легковых и грузовых автомобилей. [c.268]

    Использование бутадиен-стирольных смол в смесях с бутадиен- стирольным каучуком наиболее эффективно ввиду близкой плотности энергии когезии смешиваемых полимеров. Повышение прочностных свойств вулканизатов, полученных на основе смеси каучука с высокостирольной смолой, по сравнению с вулканизатами сополимеров с аналогичным содержанием стирола объясняется, вероятно, тем, что высокостирольная смола является своеобразным активным наполнителем. Хотя известно, что размер частиц- бутадиен-стирольных смол составляет 125 мкм и выше, т. е. в 3000 раз больше частиц усиливающей канальной или печной сажиЧ [c.41]

    Несмотря н -снижение сопротивления многократному растяжению высокостирольные полимеры, содержащие от 70 до 85% связанного стирола, придают вулканизатам натурального каучука лучшую стойкость к разрастанию трёщин и многократному изгибу при нормальной и повышенной температуре, а также увеличивают сопротивление раздиру. Отмечается также, что продолжительность вулканизации практически не сказывается на прочностных показателях резины. В резинах на основе НК лучшая усталостная выносливость достигается при введении бутадиен-стирольных смол с относительно низким содержанием стирола (40—50%). Хорошие результаты получены такл е при замене части НК бутадиен-стирольным каучуком 7 . [c.49]

    При совмещении высокостирольяых полимеров с натуральным каучуком морозостойкость вулканизатов и сырых резиновых смесей изменяется так же, как у бутадиен-стирольного каучука с теми же смолами. Относительный модуль кручения с увеличением содержания высокостирольного полимера при понижении температуры увеличивается, причем точка перегиба лежит в области тех же температур, что при введении смол в бутадиен-стирольный Каучук, хотя известно, что температура стеклования вулканизатов НК выше. Таким образом при совмещении высокостирольного полимера с каучуком основное влияние на морозостойкость оказывает с вцсокостирольный полимер. Однако, по данным авторов следует, что даже при содержании высОкостирольного полимера в смеси свыше 60% морозостойкость изделия зависит только от температуры хрупкости каучука и не зависит от количественного содержания его в смеси. [c.49]

    Широкое распространение для изготовления изделий, работающих на истирание в динамических условиях, получили стереорегу-лярные каучуки и особенно 1,4-бутадиеновый каучук (СКД). Вулканизаты, изготовленные на таком каучуке, наряду с высокой эластичностью, износостойкостью и сопротивлением образованию трещин, уступают бутадиен-стирольным каучукам по показателям сопротивления раздиру и разрастанию трещин. Эти недостатки могут быть устранены путем совмещения каучука СКД с высокостирольными прлимерамиИспользование, например, смолонаполненного каучука БС-45АК в смесях с СКД значительно повышает сопротивление раздиру и улучшает технологическую обработку, а также увеличивает прочность держания рипта (ГОСТ 2891—45), [c.50]

    Наиболее широко такие композиции используются для получения различных подошвенных резинЭто вызвано тем, что высокостирольные смолы, введенные в подошвенные резины повышают не только физико-механические показатели, но и придают вулканизатам ряд специфических кожеподобных свойств, кото-. рые являются средними между свойствами каучуков и пластмасс Проведенными исследованиями установлено, что применяя высокостирольные смолы можно получить также материалы со свойствами картона или кожи, обладающими высокой водостойкостью, хорошим сопротивлением старению и более высоким коэффициентом трения, чем у натуральной кожи Но основным преимуществом резин с применением высокостирольных полимеров является их высокая износостойкость. С помощью указанных полимеров получены пористые и монолитные подошвенные материалы с высокой износостойкостью . Такие подошвенные материалы, стойкие к старению и многократному изгибу, изготовлены на основе высокостирольной смолы и смеси бутадиен-нитрильного и бутадиен-стирольного каучуков [c.52]

Таблица 8. Свойства вулканизатов на основе смеси бутадиен-стирольного каучука с полиэтиленом и высокостирольиой смолой Таблица 8. <a href="/info/22670">Свойства вулканизатов</a> на основе смеси бутадиен-стирольного каучука с полиэтиленом и высокостирольиой смолой
    Следует отметить, что усиление каучуков общего назначения фенольными смолами проводилось в основном по второму методу. Смолы и каучуки совмещались при.температуре плавления смолы с последующим отверждением смолы в процессе вулканизации. В этом случае фенольная смола не повышает прочностных показателей вулканизатов, но является хорошим пластификатором смесей на основе бутадиен-стирольных каучуков кроме того, она повышает жесткость, твердость, обладает антиокисли-тельными свойствами и рекомендуется в количестве 10—20 вес. ч. в качестве добавки в смесях на основе каучуков общего назначения [c.101]

    В общем случае разрущение химических связей, вызывающее химическую релаксацию напряжения в резинах, может происходить под влиянием тепла (ири высоких температурах), иод влиянием тепла и кислорода, а также иод влиянием катализаторов. Как показали Догадкин и Тарасова , в вулканизатах НК и БСК уже при температуре 70 °С в среде азота происходит разрыв поперечных полисульфидных связей. При более высоких температурах с заметной скоростью разрываются также связи С—5—С и С—С. При 130 С константа скорости химической релаксации вулканизатов НК, содержащих преимущественно иолисуль-фидн е поперечные связи, примерно в 10—30 раз больше, чем вулканизатов, содержащих преимущественно поперечные связи С—8—С, а также С—С. Для вулканизатов бутадиен-стирольного каучука разница в константах скоростей химической релаксации колеблется в пределах от 6 до 250. [c.252]

    Была предпринята попытка использовать метод приведенных переменных [45, с. 495 46, с. 99] для определения прочности при заданной температуре приведения и различных скоростях деформации. Характеристики прочности являются функциями скорости деформации и температуры. Если, например, повышение температуры от до Т вызывает уменьшение всех времен релаксации [45, с. 495] в % раз, то, согласно Ферри, количество энергии, вызывающее разрушение, должно накапливаться за эквивалентное время Чат t — время разрушения при стандартной температуре Tj) при скорости деформирования Var. Значение Vut определяется временем до разрушения. Отсюда следует, что данные по разрушающему напряжению могут быть приведены к одной стандартной температуре, если построить зависимость произведения OpTJT от Var. Такая зависимость была получена Смитом [46, с. 99] для вулканизата бутадиен-стирольного каучука при стандартной температуре приведения = 263° К (рис. 1.3). Отклонение, наблюдаемое при низких температурах, Ферри связывает с возникновением температурного градиента при наступлении вынужденноэластической деформации [45, с. 496]. Метод приведенных переменных, по-видимому, применим не только в области высокоэластического состояния, но распространяется также на область стеклообразного состояния. [c.16]

    В качестве примера на рис. 2.5 приведены спектры МУРР для вулканизатов бутадиен-стирольного каучука с различным содержанием МАМ, которые указывают на заметное рассеяние диффузного характера в области 4—40 угловых минут. Для проверки того, что рассеяние рентгеновских лучей обусловлено микрочастицами соли, а не микропустотами, были проведены специальные опыты. Во-первых, исследовали влияние набухания резин на основе 1 ис-полибутадиена с МАМ в декалине. Ожидалось, что если рассеяние обусловлено пустотами, то после набухания они заполняются растворителем, и, поскольку электронные плотности декалина и каучука близки, произойдет резкое уменьщение интенсивности [c.83]

Рис. 2.5. Спектры МУРР вулканизатов бутадиен-стирольного каучука с различным содержанием МАМ. Цифры около кривых соответствуют содержанию соли (о масс, ч.) в смеси, пунктирная линия — Рис. 2.5. Спектры МУРР вулканизатов бутадиен-стирольного каучука с <a href="/info/201414">различным содержанием</a> МАМ. Цифры около <a href="/info/1573666">кривых соответствуют</a> <a href="/info/614610">содержанию соли</a> (о масс, ч.) в смеси, пунктирная линия —

Смотреть страницы где упоминается термин Бутадиен-стирольные каучуки СКС вулканизаты: [c.255]    [c.372]    [c.150]    [c.199]    [c.53]    [c.62]    [c.127]    [c.141]    [c.174]    [c.92]   
Технология синтетических каучуков (1987) -- [ c.235 , c.236 , c.341 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен-стирольные каучуки СКС

Вулканизаты

Каучук стирольные

Каучуки вулканизаты



© 2025 chem21.info Реклама на сайте