Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита внешним потенциалом

Рис. 18.5. Схема станции катодной защиты судна с наложением тока от внешнего источника с анодами (Л) и измерительными электродами (М) Л/ блок питания от судовой сети Я—ручной регулятор 1 — регулятор с управлением по величине потенциала V — магнитный усилитель Т — регулирующий трансформатор О — трехфазный преобразователь (выпрямитель) г, 5, — фазы сети трехфазного тока Рис. 18.5. Схема <a href="/info/69715">станции катодной защиты</a> судна с наложением <a href="/info/1370574">тока</a> от внешнего <a href="/info/325167">источника</a> с анодами (Л) и <a href="/info/69570">измерительными электродами</a> (М) Л/ <a href="/info/376897">блок питания</a> от судовой сети Я—ручной регулятор 1 — регулятор с управлением по величине <a href="/info/3387">потенциала</a> V — <a href="/info/525724">магнитный усилитель</a> Т — регулирующий трансформатор О — <a href="/info/28194">трехфазный</a> преобразователь (<a href="/info/39467">выпрямитель</a>) г, 5, — фазы <a href="/info/859023">сети трехфазного</a> тока

    Один из наиболее распространенных методов защиты от коррозии состоит в катодной поляризации металла. Из рис. 92 видно, что при отклонении потенциала металла в отрицательную сторону от скорость анодного растворения металла уменьшается, а скорость выделения водорода увеличивается, т. е. катодная поляризация уменьшает скорость коррозии. Катодную поляризацию можно создать от внешнего источника тока. Этот метод называют методом катодной защиты. Можно также соединить основной металл с другим металлом (протектором), который в ряду напряжений расположен левее. Часто для протекторной защиты используют магний или алюминий, при помощи которых защищают рельсы, мачты и другие конструкции. Протектор постепенно растворяется и его надо периодически заменять. Примером протекторной защиты служит также цинкование железных изделий. Железо является катодом локального элемента, а цинк—анодом. Следовательно, локальные токи вызывают коррозию покрытия, тогда как железо оказывается защищенным от коррозии. [c.214]

    Метод катодной защиты внешним током предопределяет проектирование специальных установок, позволяющих осуществлять катодную поляризацию частей сооружения. Это мероприятие позволяет снизить скорость коррозии путем затруднения анодного процесса за счет смещения потенциала в сторону более электроотрицательных значений. [c.154]

    Для электрохимической защиты резервуарных парков, как правило, применяют катодную защиту внешним током (см. рис. 1, Е). Разумеется, для поддержания защитного потенциала на заземленных резервуарах вынуждены завышать защитную плотность тока в сотни раз. [c.30]

    Приняв условно внешний потенциал сооружения за О, можно проиллюстрировать (рис. 7), что чем меньше фо, тем больше разность фо—фо приближается к своему пределу, тем сооружение менее подвержено коррозии. Таким образом, чтобы защитить подземное сооружение от электрохимической коррозии, необходимо, чтобы внешний потенциал сооружения был равен нулю. [c.22]

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]


    Высокий отрицательный потенциал магния делает его ценным материалом для протекторной защиты металлов от коррозии. Магниевые протекторы используются для защиты подземных и подводных трубопроводов, для внутренней защиты холодильников, конденсаторов, водонагревателей и других аппаратов химической промышленности, а также для защиты внешней обшивки кораблей. Для того чтобы предотвратить собственную коррозию и получить высокие токи, защищающие конструкцию, протекторы рекомендуется изготавливать из магния самой высокой степени чистоты. Примеси меди, железа и никеля снижают эффективность защитного действия протектора. [c.134]

    В условиях возможного наступления пассивности (в присутствии окислителя и при отсутствии депассиваторов) анодная поляризация металла от внешнего источника постоянного электрического тока (см. с. 321) может вызвать наступление пассивного состояния при достижении определенного значения эффективного потенциала металла и тем самым значительно снизить коррозию металла. Этот эффект также находит практическое использование в виде так называемой анодной электрохимической защиты. [c.365]

    Одним из эффективных конструктивных мероприятий является применение катодной защиты. Фактически при этом проектируются детали конструкции, которые заранее приносятся в жертву коррозии, в то время как срок службы основного сооружения повышается. Такими легко сменяемыми деталями являются протекторы, изготовляемые из сплавов анодных по отношению к стали. Метод катодной защиты внешним током предопределяет проектирование специальных установок, позволяющих осуществлять катодную поляризацию сооружения. Это мероприятие позволяет снизить скорость коррозии путем затруднения анодного процесса за счет смещения потенциала сооружения в сторону более электроотрицательных значений. [c.61]

    Защита металлов от коррозии внешним потенциалом. При возникновении гальванических пар на отдельных участках сплава металла наиболее активный металл разрушается, переходя в ионное состояние. При этом на нем возникает некоторый отрицательный потенциал. Если на изделие наложить извне отрицательный потенциал, больший, чем развивает при работе коррозионной пары более активный металл, то коррозия прекратится. Это осуществляется методами протекторов и внешнего потенциала. [c.364]

    Скорость электрохимической коррозии металла может быть уменьшена и при его анодной поляризации, если она смещает потенциал защищаемого металла в пассивную область (см. гл. V). На этом принципе основана анодная защита внешним током, при которой защищаемую конструкцию подсоединяют к положительному полюсу внешнего источника тока, а вспомогательный электрод (катод)—к отрицательному. [c.191]

    Электроды сравнения. Контроль основного параметра защиты — защитного потенциала осуществляется с помощью стационарных и подвесных электродов сравнения. Они также служат датчиками потенциала в автоматических системах катодной защиты. Известны различные по природе и техническим характеристикам электроды сравнения, однако общими требованиями к ним являются стабильность потенциала во времени и при изменении внешних факторов для регулирования и поддержания с заданной точностью необходимого защитного потенциала металлоконструкций. [c.74]

    Если металлическое сооружение не подвергается поляризации при наложении внешнего потенциала, т. е. катодная кривая на значительном протяжении имеет почти горизонтальный ход, то защита протекторами нецелесообразна, так как защитный ток в этом случае будет очень большим. [c.603]

    Статья Бианки может быть рекомендована тем, кто интересуется научными основами защиты. К сожалению предлагаемый им критерий, хотя в основном правильный, тем не менее мало применим к условиям почвы. Он показал, что если щуп зонда перемещать по прямой линии, соединяющей локальный катод защищаемого образца с внешним анодом, потенциал будет постепенно падать, если образец полностью защищен. Если протекающий ток слишком слаб для полной защиты, то потенциал сначала будет расти (вследствие влияния локального катода) и затем падать (при приближении к внешнему аноду). См. стр. 809. [c.269]

    Автор при изложении пользуется рассмотрением только электрических схем, забывая об электрохимической природе явления. Полная катодная защита окисляющегося металла будет достигнута в том случае, когда потенциал его, определяемый плотностью защитного тока, станет отрицательнее равновесного потенциала в данной среде. В случае так называемого катодного ограничения перенапряжение катодной реакции велико по сравнению с реакцией анодной (см. схему). Поляризационные кривые (а — анодного окисления металла, к — катодного восстановления окислителя) поясняют сказанное автором о полноте защиты. Внешний ток при сдвижении потенциала от его компромиссного значения в сторону более отрицательных значений будет равен ординатам заштрихованного участка (а — зеркальное изображение кривой а). Из схемы видно, что смещение потенциала от ф ДО равн- сопровождается сильным возрастанием защитного тока. При еще большем смещении потенциала защитный ток возрастает медленно, т. е. при данном его возрастании — значительно изменяется потенциал электрода. [c.316]


    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых окисных пленок или солевых пленок, возникающих при растворении металлов. Образование окисных пленок — причина устойчивости многих металлов, например алюминия. Из рис. 96 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют [c.215]

    Отмечено [27], что при анодной защите достигается необычно высокая рассеивающая способность (защита на удаленном от катода расстоянии и защита электрически экранированных поверхностей), намного превосходящая рассеивающую способность при катодной защите. Причину этого приписывали высокому электрическому сопротивлению пассивирующей пленки, что, по всей видимости, неверно, так как ее измеренное сопротивление обычно невелико. Другое объяснение может быть связано с антикоррозионными ингибирующими свойствами анодных продуктов коррозии, образующихся в малых количествах на поверхности нержавеющих сталей (например, ЗгОз , СггО , Ре " ), которые и в отсутствие внешнего тока сдвигают потенциал в пассивную область. [c.230]

    Скорость катодных процессов, т. е. суммарное количество выделяющегося водорода, в этом случае выше скорости анодного процесса на том же электроде (.2 4 > 2 4) и возрастает при увеличении внешней поляризации. Начиная с величины (в нашем случае —0,8 В), возникают условия при которых возможно выделение цинка на катоде. Катодная защита цинка достигается при плотности тока 3, скорость ионизации цинка становится исчезающе малой при дальнейшем повышении потенциала (т. е. плотности тока) и совместно с водородом начинает выделяться цинк. Чем выше плотность тока, тем большая доля затрачиваемого электричества при.ходится на процесс выделения цинка, т. е. повышается его выход по току. [c.269]

    При электрохимической защите уменьшение или полное прекращение коррозии достигается созданием на защищаемом металлическом изделии высокого электроотрицательного потенциала. Для этого защищаемое изделие или соединяют проводником с металлом, имеющим высокий электроотрицательный потенциал (способным легко отдавать электроны), или с отрицательным полюсом внешнего источника тока. В первом случае защита носит название протекторной, во втором — катодной. [c.138]

    Сущность катодной защиты заключается в том, что защищаемое изделие подключается к отрицательному полюсу внешнего источника постоянного тока, поэтому оно становится катодом, а анодом служит вспомогательный, обычно стальной электрод. При электролизе вспомогательный электрод (анод) растворяется, на защищаемом сооружении (катоде) выделяется водород. Если вспомогательный анод изготовлен из металла, имеющего более отрицательный потенциал, чем защищаемый металл, то возникает гальванический элемент. При этом отпадает необходимость в наложении тока от внешнего источника. Анод растворяется со скоростью, достаточной для создания в [c.221]

    Катодная защита основана на наложении отрицательного потенциала от внешнего источника тока на металл, при этом значительно замедляется процесс его ионизации, а в реакцию деполяризации вступают электроны не с металла, а от внешнего источника тока. При этом положительный полюс источника тока подсоединяется к анодному заземлителю. Обязательным условием катодной защиты является наличие токопроводящей среды (природные почва, вода и т.п.) между защищаемым сооружением и анодным заземлителем. Критериями эффективности катодной защиты являются защитный потенциал и плотность тока. [c.4]

    Для осуществления смещения потенциала металла в отрицательную сторону необходим источник электрической энергии. В зависимости от типа этого источника различают несколько методов защиты катодную с внешним источником постоянного тока, протекторную, электродренажную. [c.76]

    Наблюдаемая зависимость кинетики разрушения может быть объяснена проявлением двух механизмов увеличения инкубационного периода (контролируется по параметру т ) и уменьшения скорости роста трещины (по параметру т). Проявление первого механизма наиболее значительно при потенциалах, соответствующих регламентированным значениям катодной защиты. По мере снижения абсолютной величины потенциала влияние первого механизма на рост трещины уменьшается. С другой стороны, наиболее сильное проявление второго механизма отмечалось на образцах без внешней поляризации. С увеличением абсолютной величины потенциала его воздействие на замедление разрушения снижалось. При потенциалах, соответствующих регламентированным значениям катодной защиты, скорость роста трещины (по параметру т) соответствовала величине, полученной при испытаниях на воздухе. [c.111]

    В противоположность простым измерениям силы тока и потенциала при поляризационных измерениях, т. е. при снятии поляризационных кривых ток — потенциал, нужны активные системы с активными внешними схемами, имеющими переменную характеристику (см. рис. 2.3). Эти внешние схемы тоже должны быть возможно более жесткими, так чтобы все нестационарные значения располагались на известной характеристике — так называемой прямой сопротивления внешней схемы [1]. Для электрохимической защиты особый интерес представляют внешние схемы с круто поднимающимися прямыми сопротивления в диаграмме I U), т. е. с малыми внутренними сопротивлениями, поскольку такими схемами можно эффективно контролировать потенциал независимо от величины потребляемого тока. Обычные источники постоянного тока с высоким внутренним сопротивлением уступают таким схемам, поскольку изменения силы потребляемого тока вызывают и соответственно большие изменения напряжения (см. раздел 9). Для некоторых систем, например групп II и IV, согласно разделу 2.4, для защиты могут применяться только низкоомные преобразователи (см. раздел 20). [c.83]

    Для определения потенциала трубопроводов с катодной защитой без составляющей омического падения напряжения в период работы источников блуждающего тока можно установить состояние поляризации при помощи внешних измерительных образцов (см. раздел. 3,3.3.2). [c.99]

    Эффективным средством защиты металлов от коррозии являются такие электрохимические методы, как метод протекторов и метод внешнего потенциала. Методом протекторов (защитников) называют такой прием, когда к металлической детали и узлу деталей припаивают или присоединяют металлическим проводником кусок металла, электродный потенциал которого ниже, чем электродный потенциал защищаемого металла. Этим создаются условия для образования гальванического элемента, в котором более активный металл, являясь анодом, окисляется и защищает деталь до своего полного разрушения. По методу внешнего.потенциала защищаемый металл подсоединяют к отрицательному полюсу источника посто5 нного тока, тем самым превращая его в катод. На катоде восстанавливается окислитель из окружающей среды, получая электроны не от металла, а от источника тока. [c.198]

    Коррозионностойкие стали и другие пассивные сплавы (например, медноникелевые) можно защитить от точечной коррозии катодной поляризацией их от внешнего источника постоянного тока или с помощью цинковых, алюминиевых или железных протекторов. Катодная поляризация должна обеспечить такой потенциал поверхности защищаемого металла или сплава, величина которого будет ниже потенциала питтингообразо-вания. [c.444]

    Пользуясь законом Эйнштейна Ц =тс , можно утверждать, что источник защиты так изменяет внутреннее строение молекул анодного заземления, что приводит к убыли зарядов в его объеме. Напротив, разрушавшееся до подключения источника защиты подземное сооружение получает из объема почвы заряды, и при достижении ими значений, равных значениям, теряемым до наложения поля, устанавливается их равновесие, Внешний потенциал металла в этом случае равен его внутреннему потенциалу и равен нулю. Ток источника защиты / является следствием обоих полей к и Яотор. Поэтому, чтобы определить значения напряжения или тока, при которых достигается установление равновесия, необходимо проследить характер изменения стороннего поля как наиболее подверженного изменениям. [c.121]

    Из рис. 188 видно, что при катодной поляризации электрода скорость выделения водорода возрастает, а скорость растворения металла уменьшается. Таким образом, при помощи катодной поляризации можно защитить металл от коррозии. Это явление называется про-тект-эффвктом и широко применяется при защите металлических конструкций. Катодная защита осуществляется или при помощи внешнего источника тока, или при помощи соединения защищаемого металла с другим металлом (протектором), имеющим более отрицательное значение равновесного потенциала. Часто для этой цели используют цинк и магний. [c.376]

    Катодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к отрицательному полюсу внещнего источника постоянного тока (т. е. в качестве катода), а к положительному полюсу присоединяют дополнительный электрод, поляризуемый анодно. При таком пропускании тока поверхность защищаемого металла поляризуется катодно ее потенциал при этом смещается в отрицательную сторону, что приводит к ослаблению работы локальных анодов или к их превращению в катоды, т. е. к уменьшению или полному прекращению коррозионного разрушения. Анодный процесс при этом протекает на дополнительном электроде—аноде. Для полного прекращения электрохимической коррозии металла его нужно катодно заполяризо-вать до значения обратимого потенциала ( Vме)обр, а сплав — до значения обратимого потенциала его наиболее отрицательной анодной составляющей. Катодную защиту внешним током щироко применяют как дополнительное (к изолирующему покрытию), а иногда и как самостоятельное средство защиты от коррозии подземных металлических сооружений — трубопрово- [c.241]

    Анодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к положительному полюсу внешнего источника постоянного тока (т. е. в качестве анода), а к отрицательному полюсу присоединяют дополнительный электрод, поляризуемый катодно. При таком пропускании тока поверхность защищаемого металла поляризуется анодно ее потенциал при этом смещается в положительную сторону, что обычно приводит к увеличению электрохимического растворения металла однако при достижении определенного значения потенциала может наступить пассивное состояние металла (что наблюдается при отсутствии депассиваторов в коррозионной среде и приводит к значительному снижению скорости электрохимической коррозии металла), для длительного сохранения которого требуется незначительная плотность анодного тока. На дополнительном электроде — катоде при этом протекает преимущественно катодный процесс. При больших плотностях анодного тока возможно достижение значений потенциала, при которых наступает явление перепассивации (транспассивности)— растворение металла с переходом в раствор ионов высшей валентности, в результате чего образуются растворимые или неустойчивые соединения (л<елезо и хром образуют ионы Ре04 и СГО4 , в которых Ре и Сг шестивалентны), что приводит к нарушению пассивного состояния и увеличению скорости растворения металла. Анодная защита металлических конструкций от коррозии уже нашла применение в химической, бумажной и других отраслях промышленности. [c.242]

    По данным И. Л. Розенфельда и Л. И. Антропова, катодная поляризация металла от внешнего источника тока может существенно изменить скорость его коррозии в результате десорбции анионов или адсорбции катионов, которые повышают поляризацию катодного процесса, особенно резко при переходе потенциала нулевого заряда данного металла. Таким образом, катодная поляризация повышает эффективность катионных ингибиторных добавок, а эти добавки могут повысить эффективность катодной электрохимической защиты металлов, снижая значение необходимого защитного тока. Так, защитный ток для железа в 1-н. Н2804 в присутствии 0,1 г/л трибензиламина (СдНбСН2)зК уменьшается в 14 раз. При катодной поляризации замедляющее действие могут оказывать такие катионные добавки, которые обычно не являются ингибиторами коррозии. [c.366]

    Из поляризационной диаграммы медно-цинкового элемента (рис. 4.2) видно, что если за счет внешней поляризации сместить потенциал цинка до потенциала анода при разомкнутой цепи, то потенциал обоих электродов будет одинаков и цинк не будет корродировать. На этом основана катодная защита металлов — эффективный практический способ свести коррозию к нулю (этот вопрос рассмотрен в гл. 12). Внешний ток прилагают к корроди- [c.68]

    Коррозионное растрескивание под напряжением (КРН) часто является причиной разрушения подземных газопроводов [12—18]. В катодно защищенных трубопроводах КНР начинается на внешней поверхности трубы, чаще всего в местах нарушения покрытий. Вблизи от участка разрушения под нарушенным покрытием обнаруживают раствор карбоната/бикарбоната натрия, а иногда и кристаллы МаНСОз. Предполагают, что эта среда наиболее благоприятна для КРН. В большинстве конструкций, где применяется катодная защита стали от общей коррозии, сталь поляризуют до потенциала —0,85 В по отношению к Си/Си504-электроду, что соответствует значению —0,53 В по н. в. э. Катодная защита подземных трубопроводов может приводить к накоплению на поверхности трубы щелочных продуктов, например гидроксида натрия, а также растворов карбоната/бикарбоната натрия [19, 20]. Ионы водорода, катионы Na+ и вода, содержащая растворенный кислород, мигрируют к катодным участкам трубы через поры [c.186]

    Как указывалось в разд. 4.10, защита осуществляется наложением внешнего тока, который поляризует катодные участки локальных элементов до значений потенциала анодных участков при разомкнутой цепи [1]. Поверхность становится эквипотенциальной (катодный и анодный потенциал равны), и коррозионный ток более не протекает. Иными словами при достаточно большой плотности внешнего тока суммарный положительный ток протекает на всей поверхности металла (включая анрдные участки), следовательно, отсутствуют условия для перехода ионов металла в раствор. [c.215]

    Наблюдаемое замедление разрушения может быть объяснено проявлением двух механизмов увеличения инкубационного периода (контролируется по параметру КЬ) и уменьшения скоростя роста трещины (по параметру т). Проявление первого механизма наиболее значительно при потенциалах, соответствующих регламентированным значениям катодной защиты. По мере снижения абсолютной величины потенциала влияние первого механизма на рост трещины уменьшается. С другой стороны, наиболее сильное проявление второго механизма отмечалось на образцах бев внешней поляризации. С увеличением аОсо- [c.36]

    Постоянная катодная поляризация изделия, экс-плуатируюш,егося в среде с достаточно большой электропроводностью. Такая поляризация, осуществляемая от внешнего источника электрической энергии, носит название катодной защиты. В некоторых случаях катодная поляризация может осуществляться не постоянно, а периодически, что дает ощутимый экономический эффект. При катодной защите изделию сообщается настолько отрицательный электрический потенциал, что окисление металла становится термодинамически невозможным. [c.18]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    При электрохимической защите металл соединяют или с отрицательным полюсом внешнего источника тока, или с более электроотрицательным материалом. В первом случае защита называется электрозащитой, во втором — протекторной (рис. 62). Принцип действия в обоих случаях состоит в том, что металл, получая электроны от внешнего источника, становится катодом (по отношению к электролиту) и, следовательно, не должен корродировать (см. работу 26). Надо иметь в виду, что полученный отрицательный потенциал должен быть настолько большим, чтобы все анодные участки на металле стали катодными. Если этого нет, то коррозия в результате деятельности микрогальванопар будет продолжаться, но значительно медленнее, чем без защиты. [c.175]

    Сущность катодной защиты заключасгтся в том, что защищаемое изделие подключается к отрицательному полюсу внешнего источника постоянного тока, поэтому оно становится катодом, а анодом служит вспомогательный, обычно стальной электрод. Вспомогательный электрод (анод) растворяется, на защищаемом сооружении (катоде) выделяется водород. Если вспомогательный анод изготовлен из металла, имеющего более отрицательный потенциал, чем защищаемый металл, то возникает [c.238]

    Катодная защита с помощью протектора обеспечивается при правильном ее выполнении обычно без больших технических затрат. Однажды смонтированная система защиты работает без обслуживания, нуждаясь лищь в эпизодическом контроле потенциала. Системы защиты с протекторами (гальваническими анодами) независимы от сети электроснабжения и ввиду низкого движущего напряжения обычно не создают помех для близлежащих объектов. Ввиду малости напряжений обычно не возникает проблем и по технике безопасности электрооборудования. Системы с протекторами поэтому можно размещать на взрывоопасных участках. Для защиты от грунтовой коррозии протекторы могут быть размещены вплотную к защищаемому объекту в той же траншее (в том же котловане), так что практически не требуется никаких дополнительных земляных работ. Благодаря подсоединению протекторов к объектам, испытывающим влияние других источников, в области катодной воронки напряжения от внешних источников можно обеспечить, например при ремонтных работах, ограниченную защиту этих опасных мест (защиту горячих участков ). На органические покрытия для пассивной защиты от коррозии протекторная защита не влияет или оказывает лишь незначительное влияние (см. раздел 6). Поскольку защитные системы с протекторами ввиду низкого движущего напряжения должны выполняться возможно более низкоомными (см. рис. 7.2), потенциал получается сравнительно постоянным. Если потенциал объекта защиты становится более положительным, то отдаваемый ток защиты увеличивается, и наоборот. Поэтому можно говорить и о саморегулируемости (потенциала). [c.197]


Смотреть страницы где упоминается термин Защита внешним потенциалом: [c.363]    [c.196]    [c.69]    [c.70]    [c.36]    [c.16]    [c.198]   
Химия (1986) -- [ c.528 ]

Химия (1975) -- [ c.531 ]




ПОИСК





Смотрите так же термины и статьи:

Защита металлов от коррозии внешним потенциалом

Потенциал внешний

Размеры и число протекторов 18.3.2.2. Размещение протекторов Измерение потенциала Защита с наложением тока от внешнего источника



© 2025 chem21.info Реклама на сайте