Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионные пары перенос электрона

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]


    Одним из перспективных направлений в использовании ХМЭ является модифицирование их соединениями, которые ускоряют перенос электронов с электрода на деполяризатор (или наоборот). Указанные соединения выполняют роль медиаторов сначала они принимают (или отдают) электроны от электрода, а затем участвуют в быстрых редокс-реакциях с определяемым компонентом. Эти реакции широко используются в амперометрических ферментных биосенсорах, поскольку многие ферменты являются редокс-медиаторами. Разработаны способы иммобилизации хинонов, органических и неорганических ионов, редокс-красителей, ферментов. На сегодняшний день одним из лучших медиаторов является ферроцен - Г] -бис(циклопентадиенил)железа. С электрохимической точки зрения ферроцен представляет собой классическую редокс-пару ( ° = 165 мВ относительно НКЭ), на физические и химические свойства которой можно влиять, вводя заместитель в любое из колец молекулы. [c.487]

    Одним из важных разделов теоретической химии является учение о химической связи. Ковалентная связь осуществляется общей электронной парой, облако которой по-разному может распределяться в пространстве относительно ядер атомов Если электронное облако располагается симметрично между ядрами обоих атомов, то такая связь является неполярной ковалентной связью. Если электронное облако смещается в сторону более электроотрицательного атома, то происходит поляризация связи. Такая ковалентная связь называется полярной. Другой разновидностью химической связи является ионная связь, которую следует рассматривать как результат полного переноса электрона от одного атома к другому. Здесь допускается, что связь обусловлена силами электростатического притяжения между частицами противоположного заряда, В металлах между атомами осуществляется металлическая связь, характерной особенностью которой является обобществление валентных электронов множеством атомов в кристалле (делокализация). [c.87]

    Однако было бы неправильным считать, что все сводится к взаимодействию заряженных частиц со средой, к действию электростатических сил. Так, может происходить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к распределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества,— а для растворителя с низкой диэлектрической проницаемостью и при сравнительно небольших его концентрациях,— в результате усиления влияния заряженных частиц друг на друга могут образоваться ионные пары и более сложные группировки, содержащие как ионы, так и молекулы. [c.168]


    Кубическая модель атома по Льюису [112] заслуживает специального упоминания. Она оказала влияние на формирование концепции связывающих электронных пар. Представление о ней позволило разрешить кажущееся противоречие между двумя типами различных химических связей совместное использование пары электронов в ковалентной связи и ионная связь с переносом электронов. В рамках теории Льюиса эти два типа связи выглядят просто, как два предельных случая. Кубические модели атомов по Льюису показаны на рис. 3-80. Они также примечательны, как примеры полезного, хотя необязательно правильного использования полиэдрических представлений. [c.168]

    Способность некоторых органических соединений вызывать каталитическое выделение водорода связана, по-видимому, с наличием у них неподеленной пары электронов (у атомов азота, серы, кислорода, фосфора, мышьяка и т. п.), к которой может присоединяться протон, в результате чего образуются ониевые соединения, способные вступать в электрохимическую реакцию на катоде. Электрохимическая активность ониевых соединений обусловлена не наличием на них положительного заряда, облегчающего подход частицы к катоду и ее разряд [752], а самой химической природой ониевого иона. Если перенос электрона на про-тонированную ониевую форму был бы обусловлен только ее положительным зарядом, то следовало бы ожидать разряда и незаряженной непротонированной формы катализаторов, правда при более отрицательном (на 200—300 мв) потенциале, как это имеет, например, место нри разряде заряженных и незаряженных производных анилина, фенола [647, 648], а также слабых кислот и их анионов (см. главу V). Однако разряда непротонированной формы катализатора наблюдать не удается, что и позволяет сделать приведенный выше вывод [749]. [c.213]

    Термодинамическая и механическая прочность АЬОз, несомненно, связана с большой энергией его кристаллической решетки, что в свою очередь объясняется сильным кулоновским взаимодействием ионов АР+ и 0 , а также вкладом в химическую связь ковалентной составляющей. Возникновение последней можно объяснить очень сильным поляризующим действием маленького по размерам высокозаряженного иона AF+. Ион А з+ смещает на себя эле - тронную плотность окружающих его ионов О , при этом электронные пары 0 могут занимать свободные р- и d-орбитали алюминия (донорно-акцепторная связь). Перенос электронов с ионов О на орбитали АР+, конечно, понижает эффективный положительный заряд иона А1 (III) и уменьшает кулоновское взаимодействие противоположно заряженных ионов. Однако этот эффект компенсируется ковалентным взаимодействием, и, как мы видели, прочность АЬОз действительно уникальна. [c.57]

    Наличие электроактивных центров в электропроводящих полимерных пленках, число которых может достигать нескольких десятков тысяч, обеспечивает перенос электронов в ходе электрохимических реакций. Этот процесс может осуществляться двумя путями вследствие диффузии электрохимически активных частиц через поры и точечные отверстия внутри пленки (ионный перенос) и в результате обмена электронами между соседними парами ре-докс-центров (электронный перенос). В последнем случае кажу- [c.483]

    В отличие от газа, где столкнувшиеся частицы-реагенты изолированы от других молеул, в жидкости молекулы растворителя создают для реагентов новые условия и возможности в осуществлении элементарного акта. Если реакция идет с переносом электрона, то возникает возможность его туннелирования. Реакция с участием атома Н может идти с переносом протона или гидрид-иона. Возрастает вероятность и роль реакций с участием ионов и ионных пар из-за сильной сольватирующей способности полярного растворителя. [c.137]

    Как правило, большинство комплексообразователей — ионов d-металлов — имеет достаточное количество вакантных атомных орбиталей для установления с лигандами большого числа а-связей по донорно-акцепторному механизму. Однако эти возможности не могут быть реализованы полностью, так как перенос электронных пар от лигандов к комплексообразователю повышает его отрицательный заряд, который препятствует дальнейшему акцептированию электронов. Кроме того, взаимное отталкивание лигандов, особенно анионов, ограничивает их число в комплексе, а следовательно, и [c.121]

    Мы видели, что существует два крайних типа химической связи ионные связи, образующиеся при переносе электрона, и ковалентные связи, образующиеся за счет общей пары электронов. Физические свойства соединения в значительной степени зависят от типа связи атомов в молекуле. [c.28]

    Характер промежуточных соединений с катализатором различен. Для кислотно-основных реакций, когда электронные пары перемещаются без разобщения электронов (гетеролитический разрыв валентных связей) — это комплексы типа солей для окислительно-восстановительных реакций, когда электронные пары разделяются (гомолити-ческие или радикальные реакции), это, как правило, комплексы с участием молекул или ионов, содержащих металлы переменной валентности. К первой группе относятся процессы, в которых катализатором служат кислоты или основания это реакции присоединения (отщепления) полярных молекул. Ко второй группе относятся процессы, в которых катализаторами служат ионы -элементов или образованные ими комплексы (в частности, реакции с участием атомов И или О). В последних перенос электрона [c.123]


    Ионы в растворе могут появиться и путем переноса протона от молекулы растворенного вещества на молекулу растворителя или наоборот. Например, сильная кислота при растворении в воде передает свой протон молекуле воды, в результате чего образуется катион оксоний Н3О+ и анион кислоты. Первоначально образуется ионная пара, которая легко диссоциирует в воде в силу высокой диэлектрической постоянной последней. Аналогично растворение. аммиака в серной кислоте приведет к образованию ионов NHJ и аниона HSO4, В растворителях с низкой диэлектрической постоянной, которые мог т либо отдавать протон, либо обладают неподеленной парой электронов, способной принимать протон от кислоты, образование ионной пары происходит, но не сопровождается ее диссоциацией, и свободных ионов в растворе не образуется. [c.125]

    Перенос электрона со свободных анионов является процессом, контролируемым диффузией. В растворителях эфирного типа бимолекулярная константа скорости при температурах, близких к комнатной, превышает 10 л/(моль-с) [69]. В системе, содержащей контактные ионные пары, перенос электрона протекает значительно медленнее (табл. 7.14). Объяснить это нетрудно. Если при переносе электрона от свободного аниона окрул ающая его сольватная оболочка должна разрушиться, а затем возникнуть вокруг нового аниона, то при переносе от контактной конной пары кроме пересольватации аниона должна происходить и пересоль-ватация катиона. Последний процесс является причиной более низкой реакционной способности контактных ионных пар. [c.272]

    Присутствие в растворе некоторых органических веществ R, содержащих атомы азота, фосфора, серы, кислорода и некоторые другие, имеющие неподеленную пару электронов, может вызывать каталитическое выделение водорода при тех потенциалах, когда непосредственный разряд на электроде ионов гидроксония или других доноров протонов ВН+ еще невозможен (Р. Брдичка, Э. Кнаблох, С. Г. Майрановский). Упомянутые вещества способны присоединять протон, образуя ониевые соединения. Механизм процесса каталитического выделения водорода включает стадию протонирования органического вещества-катализатора и определяется последовательностью трех реакций, из которых только одна связана с переносом электрона  [c.258]

    Различия в поведении окислов и фторидов наблюдаются, по-vBидимoмy, как результат влияния особых геометрических стабилизирующих факторов. Различие между переносом единичного электрического заряда, связанного с фтор-ионом, и переносом электронной пары, связанной с ионом кислорода, делает эту аналогию менее точной. В системе НР устойчив одновалентный гексафторидный анион МРб, имеющий вид октаэдра. Кислород не образует анионов аналогичной структуры, и в случае пятиокиси сурьмы кислотные свойства проявляются только нри взаимодействии с сильными основаниями  [c.72]

    Перенос электрона между радикалом и диамагнитной частицей также может происходить с такой скоростью, которая вызывает уширение спектральных линий. Одной из первых была исследована система, в которой происходил обмен электроном между нафталином и его анион-радикалом. Если растворителем служил ТГФ, константа скорости второго порядка переноса электрона составляет 610 л/мольс [25а]. Эта величина в сто раз меньше, чем для процесса, контролируемого диффузией. Полагают, что снижение скорости обусловлено тем, что наряду с переносом электрона происходит перенос положительного нротивоио-на ионной пары анион-радикала. [c.49]

    Следует отметить, что в этой классификации все связи предпола гаются ковалентными и что в каждом отдельном случае упоминается или подразумевается перенос электронных пар к иону металла или.от него. Как мы увидим ниже, не всегда координационную связь нужно трактовать как только ковалентную, в некоторых случаях ее удобно рассматривать как возникающую вследствие чисто электростатических взаимодействий. [c.242]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Тейлор [196], однако, предлагает не использовать механизм электронного переноса для объяснения результатов термического распада циклопропилацетилциклобутанкарбонил- и 4-пентаноил-л<-хлорбен-зоилпероксидов. Доводы в пользу образования интермедиата типа ионной пары из пероксида с группой R, способной к образованию стабильного катиона, были также предложены в работе [197]. При этом авторы опирались на небольшую ХПЯ или полное ее отсутствие в изученных ими системах как доказательство против образования радикальной пары. [c.276]

    Выдвинуто интересное предположение [86], согласно которому комплекс соударения представляет собой радикальную пару Ы02-АгН+ , образующуюся в результате переноса электрона. На основании этого можно объяснить, почему электрофил, оказавшись в составе комплекса соударения, может приобрести селективность, которой свободный N02+ не обладал (эта гипотеза не предполагает, что радикальные пары присутствуют во всех реакциях ароматического замещения, но только в тех случаях, когда нарушается закономерность, связанная с факторами селективности). Радикальная пара затем схлопы-вается в аренониевый ион. Имеются данные как в поддержку [87], так и против [88] этого предположения. [c.331]

    Различие в электроотрицательности взаимодействующих атомов приводит к образованию полярной связи вследствие смещения электронной плотности молекулярной орбитали к бо.иее электроотрицательному атому. Если же различие между атомами очень велико, то можно говорить о полном переходе электронной пары к более электроотрицательному атому. Упрощенно это сводится к переходу электрона от одного атома к другому, например при образовании хлорида натрия НаС1. Взаимодействие атомов натрия и хлора в соответствии с теорией ионной связи сопровождается переносом электрона от натрия к хлору. Нейтральный атом натрия, теряя электрон, превращается в положительно заряженный ион (катион), а атом хлора, приобретая электрон, — в отрицательно заряженный нон (анион). Известно, что на внешнем уровне щелочные метаялы [c.71]

    Как правило, большинство кюмплексообразователей — ионов -металлов — имеет достаточное количество вакантных атомных орбиталей для установления с лигандами большого числа а-связей по донорно-акцепторному механизму. Однако эти возможности не могут быть реализованы полностью, так как перенос электронных пар от лигандов к комплексообразователю повышает его отрицательный заряд, который препятствует дальнейшему акцептированию электронов. Кроме того, взаимное отталкивание лигандов, особенно анионов, ограничивает их число в комплексе, а следовательно, и координационное число комплексообразователя. При объяснении тех или иных значений координационного числа можно воспользоваться электростатической теорией, выводы которой достаточно хорошо согласуются с экспериментальными данными. При этом теоретический расчет координационных чисел основывается на сопоставлении кулоновских сил притяжения к комплексообразователю лигандов и их отталкивания друг от друга. [c.159]

    Р. п. возникают в фотохим. окислит.-восстановит. процессах с переносом электрона или протона, при образовании кластеров, ионных пар (ион-радикалов) в слабо сольватирующих р-рителях, напр, парамагнитные димеры кетилов  [c.159]

    Первичное разделение зарядов на стадии Р А.АгА, Р+А7А2А3 рождает пару ион-радикалов (электрон-дырочную пару) Р А7. В фотосинтетичес-ком реакционном центре первичный донор отдает электрон в синглетном возбужденном состоянии. Следовательно, в РЦ фотосинтеза первичная РП Р А7 образуется в синглетном спиновом состоянии. Вторичная пара Р А наследует спиновое состояние первичной пары Р А7 в момент переноса электрона А7А2 А,А2. [c.107]

    При замещении парамагнитного иона железа диамагнитным ионом цинка, в экспериментах по ЭПР пурпурных бактерий наблюдается сигнал от пары дырка на доноре и электрон на первичном хиноне Рд. Время жизни электрона на бактериофеофитине мало (280 пс), что крайне затрудняет наблюдение первичной пары Р+А7 в ЭПР экспериментах. В хорошем приближении можно пренебречь спиновой динамикой в очень ко-роткоживущей первичной паре Р А7. Это означает, что к моменту переноса электрона на хинон пара Р А7 практически остается в том же самом, синглетном, состоянии, в котором она образовалась. [c.107]

    В системах, содержащих бензоилпероксид или др. пероксиды ацилов в сочетании с диалкиланилином, перенос электрона осуществляется через промежуточный комплекс с образованием ион-радикальной пары по реакции  [c.237]

    Интересен отрицательный сольватохромный эффект 1-этил-4-метоксикарбонилпиридинийиодида, спектр поглощения которого в УФ- и видимом диапазонах в различных растворителях представлен на рис. 6.3 [65—67]. Наиболее длинноволновая полоса поглощения этого соединения, существующего в основном состоянии в виде ионной пары, соответствует межмолекулярному переносу электрона от иодид-аниона к катиону пири-диния, сопровождающемуся нейтрализацией зарядов. В основ- [c.416]

    Здесь 1 означает комплекс, образуемый в результате встреч Ь и А 2 - ион-радикальную пару - продукт переноса электрона в комплексе 1 3 - ион-радикалы, вышедшие в объем р-ра из клетки, образуемой молекулами р-рителями для радикальной пары. Если Ф. протекает с участием орг. молекул донора, то О вступает в р-цию в возбужденном синглетном или триплетном состоянии. Для достижения макс. выхода продуктов р-ции между и А", протекающей через трип-летное состояние О, требуемая концентрация А обычно на неск. порадков меньше, чем в случае р-ции, протекающей через синглетное возбужденное состояние, что является следствием существенного различия (на неск. порядков) во временах жизни триплетных и синглетных возбужденных состояний. С диссоциацией пары конкурирует геминальная рекомбинация с образованием пары исходных (не возбужденных) реагентов О...А, вероятность этого процесса зависит, в частности, от мультиплетности состояний В ...А и О...А. Напр., геминальная рекомбинахщя триплетной пары является процессом, запрещенным по спину, синглетная пара преим. [c.172]

    Ион железа в степени окисления 3+ не вызывает окисления меркаптана в дисульфид По-видимому, в комплексе [Fe L138]+ происходит значительный перенос электронной плотности с лиганда на ион РеЗ+, ц о понижает редокс-потенциал пары Fe +/Fe + до такого значения, что ионы Fe + уже не могут выступать в качестве окислителя, меркапто-группы [c.88]

    Некомплементарные окислительно-восстановительные реакции обычно медленнее комплементарных, так как в этом случае механизм более сложный, 1 Ш0Г0ступенчатый, сопровождающийся образованием промежуточных соединений. Медленно протекают окислительно-восстановительные реакции с участием редокс-пар, в которых перенос электронов осуществляется атомами или группами атомов и сопровождается их перегруппировкой. Например, реакции с участием перманганат- и бихромат-ионов. Реакция же с участием редокс-пары СЮ4/СГ ( ° = 1,34 В) практически не идет, так как скорость ее чрезвычайно мапа из-за необходимости разрушить устойчивую внутреннюю сферу оксоиона СЮ4. [c.91]

    В отличие от рассмотренной реакции переноса атома галогена индуцированное растворителем изменение скорости реакции между 1-этил-4-метоксикарбонилпиридинилом и 4-нитро(гало-генметил) бензолами настолько велико, что здесь приходится допустить наличие иного механизма [215,570]. При замене растворителя 2-метилтетрагидрофурана на ацетонитрил относительная ко.нстанта скорости реакции с участием 4-нитро(бромметил) бензола возрастает в 14 800 раз. Примерно такое же изменение скорости реакции возможно и в реакции, в которой из двух нейтральных молекул образуется ионная пара [см., например, реакцию (5.16)]. Эти данные позволили предположить, что рассматриваемая реакция осуществляется путем переноса электрона [215, 570]. [c.261]

    Обсуждение реакций карбениевых ионов с я-электронными парами будет ограничено здесь рассмотрением реакций с олефинами и бензоидными ароматическими соединениями. В обоих случаях первоначальным продуктом является другой карбениевый ион, который далее реагирует с образованием устойчивых продуктов. Среди реакций циклогексадиенил-катионов, генерируемых электрофильной атакой на бензоидиые соединения, преобладает реакция, ведущая к восстановлению ароматического секстета обычно за счет потери протона. Карбениевые ионы, образующиеся при взаимодействии карбениевых ионов с олефинами, могут претерпевать дальнейшие превращения по нескольким конкурирующим направлениям, одним из которых является атака на другую молекулу олефина, что приводит к образованию полимерных продуктов. Из простых а-олефинов при катионной полимеризации образуются продукты с низкой молекулярной массой, поскольку в таких системах процессы переноса преобладают над процессами роста цепи. Полимеры с высокой молекулярной массой образуются обычно из таких олефинов как виниловые эфиры и стиролы. Типичные величины относительной реакционной способности виниловых мономеров, определенные при изучении сополимеризации в нитробензоле, следующие [46] бутадиен 0,02, изопрен 0,12, винилацетат 0,4, стирол (1,0), изобутен 4 виниловые эфиры реагируют очень быстро. Иногда катионная полимеризация протекает стереорегу-лярно. [c.541]


Смотреть страницы где упоминается термин Ионные пары перенос электрона: [c.137]    [c.410]    [c.34]    [c.116]    [c.273]    [c.40]    [c.1234]    [c.219]    [c.264]    [c.375]    [c.429]    [c.30]    [c.221]    [c.516]    [c.141]   
Анионная полимеризация (1971) -- [ c.378 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная пара

Ионное без переноса

Электронная пара



© 2025 chem21.info Реклама на сайте