Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологические окиси этилена

    Пытаясь рационализировать процесс синтеза этилового алкоголя, применяя те же кислотные скрубберы, мы изучали условия протекания реакции между этиленом и серной кислотой, не прерывая процесс и основываясь на принципе работы батареи реакционных аппаратов [41. Ока алось, что, используя любые варианты работы скрубберов, но не изменяя их конструкции, нельзя достигнуть одновременного снижения расхода серной кислоты и увеличения коэффициента использования этилена в газе (табл. 1). Из данных табл. 1 видно, что с понижением расхода кислоты на единицу спирта выход последнего падает. Эта закономерность подтверждает абсолютную неприменимость скрубберов в качестве реакционных аппаратов в технологическом процессе синтеза. [c.26]


    В настоящее время попытки использования твердого топлива в топливных элементах оставлены, и основное внимание уделяется использованию газообразных и жидких топлив, обладающих большей химической активностью и более удобных в технологическом отношении. Среди жидких топлив наиболее перспективными являются метиловый и этиловый спирты, формальдегид, гидразин среди газообразных —этилен, бутан, пропан и другие углеводородные газы, бензин в парообразном состоянии, окись углерода, водород. Окислителем в большинстве случаев служит кислород (свободный или входящий в состав воздуха), но для некоторых специальных [c.491]

    Несколько отличаются от описанных технологические схемы на основе отходов производства ацетилена (синтез-газ). Этот газ содержит водород и окись углерода в соотношении, близком к двум,, однако присутствуют до 5,5 объемн. % СН4, 2—3 объемн. % N2, ацетилен и его производные, этилен и соединения азота. Это затрудняет использование газа без предварительной подготовки. Имеется несколько способов переработки синтез-газа в метанол. Обычно его подвергают паро-кислородной, паро-углекислотной или высокотемпературной конверсии. Одновременно с окислением метана конвертируется и большинство присутствующих в газе органических примесей. Существуют схемы, в которых компоненты газовой смеси разделяются на установках глубокого холода или метан выделяется промывкой жидким азотом. После конверсии газ очищает- [c.87]

Рис. 2.10. Принципиальная технологическая схема установки окисления этилена кислородом 1 - адсорбер 2,3 - реакторы 4,5 - абсорберы I - этилен II - воздух III - вода IV - в атмосферу V - окись этилена на ректификацию Рис. 2.10. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/739399">установки окисления</a> этилена кислородом 1 - адсорбер 2,3 - реакторы 4,5 - абсорберы I - этилен II - воздух III - вода IV - в атмосферу V - окись этилена на ректификацию
    Технологическая схема процесса получения окиси этилена, разработанного фирмой S ientifi Design, изображена на рис. 6.24. Воздух, подаваемый компрессором У, смешивается с этиленом и циркулирующим реакционным газом и вводится в низ контактного аппарата 2, в трубки которого загружен катализатор. Температура окисления регулируется скоростью циркуляции теплоносителя. Реакционные газы охлаждаются в теплообменнике, нагревая циркулирующий газ, и в холодильнике, а затем компримируются дожимающим компрессором 3. Далее газ поступает в основной скруббер 4, где окись этилена улавливается водой. Большая часть выходящего газа направляется на смешение с исходной эти-лено-воздушной смесью, меньшая — в дополнительный контактный аппарат 5 для окисления непрореагировавшего этилена, а затем на промывку водой в дополнительный скруббер 6. Отходящий из скруббера газ выбрасывается в атмосферу. Водные растворы из скрубберов 4 и 6 смешиваются и поступают в десорбер 7. Из верхней части десорбера отводят окись этилена, пары воды и Oj. Они компримируются и направляются на двухступенчатую ректификацию. В колонне 9 выделяется этилен, Oj и другие легкокипящие компоненты. С верха колонны 10 отбирают окись этилена. В кубе этой колонны остаются высококипящие примеси (вода, ацетальдегид, этиленгликоль). [c.206]


    Необходимая четкость разделения и чистота газовых фракций зависят от условий их дальнейшей технологической переработки. Так, для получения полиэтилена глубокой полимеризацией под давлением выше 1000 ати требуется необычайно высокая чистота исходного этилена (99,9%). Однако новейшие способы полимеризации при низком давлении над гетерогенными катализаторами и в присутствии растворителей позволяют снизить чистоту сырья до 95% [24]. Для получения этанола гидратацией над фосфорнокислым катализатором требуется этилеп 97 %-ной чистоты, а старейший способ производства этилового спирта и эфира при помощи серной кислоты позволяет использовать газ с 35—95%-пым содержанием С2Н4. При алкипирова-пии бензола этиленом в присутствии хлористого алюминия желательна чистота этиленового сырья не ниже 90%, а с фосфорнокислым катализатором может использоваться этан-этиленовая смесь. Окись этилена получается и 95%-ного этилена. [c.158]

    На заводах синтетического этилового спирта, работающих сернокислотным способом, возможно использование этилена в виде этан-этиленовой фракции с относительно широким интервалом концентрации этилена (35—95%). После извлечения этилена серной кислотой этан возвращается на пиролиз. В этом случае применяется одна колонна с небольшим числом тарелок для отгонки этан-этиленовой фракции, а кубовый продукт, содержащий этан, пропан, пропилен и высшие, возвращается на пиролиз. При получении синтетического этилового спирта. методом прямой гидратации требуется применение фракции Сг с содержанием этилена 1не менее 95%об. В ряде других производств (алкилирова-ние бензола с целью получения этилбензола, прямое окисление в окись этилена, получение хлорпроизводных) достаточно иметь газ с 90—95% содержанием этилена. На полимеразицию под высоким давлением и другими методами направляется этилен с концентрацией 99,9%. Применение высококонцептрированного этилена, выделение которого требует значительных затрат, в ряде случаев выгодно с технологической точки зрения, т. к. облегчается освобождение от других примесей, являющихся ядами катализаторов, отпадает необходимость ректификации при рециркуляции непрореагировавшего этилена. [c.68]

    На приобретение и установку новых анализаторов затрачено 75 тыс. долл. Фирма приобрела пять хроматографов и установила их на пяти технологических потоках. Анализаторы определяют 17 компонентов в газовой и жидкой фазе. Они работают на потоках, в состав которых входят этан, этилен, пропилен, изобутан, кислород, окись углерода, двуокись углерода и все производные бутилена. Концентрация производных бутилена измеряется в пределах от О до 2%. В комплект хроматографа входит баллончик с онтрольной с.месью, что облегчает калибровку и обслуживание хроматографа. [c.545]

    В исключительных случаях на сосудах с ядовитыми или взрывоопасными средами допускается установка предохранительного клапана без приспособления для принудительного открывания, при условии, что будет исключено примерзание, прикипание или закупоривание (полимеризация) рабочей средой клапана. В этом случае проверка клапанов должна производиться периодически в сроки, установленные технологическим регламентом, но не реже одного раза в 6 мес. Среды, для которых допускается установка предохранительного клапана без принудительного отжима хлор, аммиак, природный газ, азотоводородная смесь, метанол, кислород, водород, синтез-газ, коксовый газ, окись углерода, непредельные углеводороды (этилен, пропилен, изобутилен, ацетилен, [c.217]

    Перечень технологических сред, для которых допускается применение предохранительных клапанов без подрыва хлор (жидкий и газообразный) аммиак (жидкий и газообразный) серный и сернистый ангидриды дифенильные смеси фосген метилизоцианат хлористый водород четыреххлористый углерод дихлорэтан, трихлорэтан уксусная кислота и уксусный ангидрид тетрагидрофуран гексахлорциклоиентадиен природный газ азотноводородная смесь конвертированный газ раствор углеаммонийных солей растворы аминов и анилина в хлорбензоле амины, полиамины и анилины метанол пары диметил- и дифенилоксида пары ртути меламин плав мочевины газы пиролиза синтез-газ кислород (жидкий и газообразный) водород коксовый газ окись углерода сероводород кетоны (циклогексанон и ацетон) кислые пары (азотная кислота, окислы азота, уксусная кислота) динитротолуол щелочная целлюлоза моно-этаноламин ацетальдегид и кротоновый альдегид непредельные углеводороды (этилен, пропилен, изобутилен, ацетилен и др.) предельные углеводороды (метан, пропан, бутан и др.) органические растворители (ксилол, бензол, циклогексан и др.) хлорпроизводные (хлорэтил, хлорвинил, хлорметил, хлоропрен и др.) калиевая, натриевая и аммиачная селитры циклогексаиол. [c.162]

    Состав ацетиленосодержащих газов определяется способом производства ацетилена, его технологическим режимом и углеводородным сырьем, предназначенным для получения ацетилена. Характерными компонентами ацетиленосодержащих газовых смесей являются, кроме ацетилена, водород, метан, этилен, окись углерода, гомологи ацетилена, азот, углекислота, пропилен и др. Все они имеют совершенно различные свойства. Основные физико-химические свойства компонентов, входящих в смеси, содержащие ацетилен, приведены в табл. 38. Как видно из таблицы, компоненты ацетиленосодержащих смесей имеют резко отличающиеся критические параметры температуры и давления, разные температуры кипения и затвердевания, различные теплоты испарения и конденсации и, как будет показано позднее, различную растворимость в жидкостях. [c.97]



Смотреть страницы где упоминается термин Технологические окиси этилена: [c.175]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.555 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен окись



© 2024 chem21.info Реклама на сайте