Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коссель, октетная теория

    Идея об одновременном участии электронов в электронных оболочках двух соседних атомов явилась основой так называемой октетной теории, или теории электронных пар, возникшей в результате работ Косселя, а затем Льюиса и Лангмюра. Основное положение в этой теории состоит в следующем связь (простая) между атомами образуется всегда не за счет одного, а за счет двух валентных электронов, которые в результате этого становятся общими для двух атомов (Льюис и Лангмюр). При изображении электронов точками формула молекулы водорода будет иметь вид Н Н, формула хло- [c.30]


    Льюис и Лангмюр принимают, что инертные газы (за исключением гелия, обладающего только двумя электронами) содержат на внешних оболочках по 8 электронов. Это предположение совпадает с представлениями о строении атомов, вытекающими из теории Бора. Коссель также придерживался этого положения, не придавая ему, однако, в своей теории основного значения, как это делает Льюис. В теории Льюиса положение о восьмиэлектронных оболочках является существенным. Проявление валентности он сводит к стремлению образовать как можно больше восьмиэлектронных групп (октетов по Лангмюру). Поэтому Лангмюр назвал эту теорию октетной теорией валентности. [c.154]

    Базир тощийся на квантовой механике подход к рассмотрению X. с, позволил объяснить многие теоретич. положения классич. и электронных моделей X. с. и понять эксперим. данные, не укладывающиеся в эти модели. Так, для атомов s-и р-элементов установление возможности образования не более четырех валентных связывающих мол. орбиталей привело к пониманию октетной теории Льюиса - Косселя. Структурная теотия Гиллеспи получила объяснение в рамках метода мол. орбиталей. Образование комплексных соед., у к-рых центральный атом образует большее число связей, чем то допустимо формальными правилами классич. теории валентности, стало понятным с развитием кристаллического поля теории и поля лигандов теории. Количеств, результаты, позволяющие характеризовать отдельные X. с., получают с помощью квантовохим. расчетов (см. Незмпирические методы, Полуэмпирические методы) и экспериментально, напр, при изучении распределения электронной плотности в мол. кристаллах рентгенографич. методами. [c.236]

    Вскоре после появления атомной модели Бора Коссель в Гер мании и Льюис в Америке развили теорию, позволяющую согласовать строение атомов с их стремлением включаться в химические соединения. Положения этой теории часто называют октетной теорией. Хотя за последнее время в изучении природы химической связи были сделаны большие успехи, эта теория сохранила свое значение до настоящего времени. [c.47]

    В период 1916—1920 гг. появились октетные теории химической связи, развитые Косселем и Лэнгмюром. Коссель полагал, что реакционная способность элементов сводится к тому, что их атомы стремятся принять электронную конфигурацию инертных газов. Образование таких конфигураций может происходить в результате перехода электронов от атомов одних элементов к другим. При этом образуются разноименно заряженные ионы, удерживаемые в молекуле силами электростатического притяжения. В результате такого процесса образуются гетерополярные молекулы. Эта теория давала возможность объяснить ряд реакций, а также свойства некоторых соединений. Но она была беспомощна объяснить образование неполярных соединений и их свойства. Этот пробел в теории Косселя был восполнен Лэнгмюром, который предположил, что восьмиэлектронная конфигурация атомов может достигаться не только за счет перехода электронов от атомов одних элементов к другим, но и благодаря образованию общих электронных пар, принадлежащих одновременно двум атомам. В дальнейшем эта теория была развита Льюисом, который показал, что общие электронные пары могут образовываться не только вследствие подчинения правилу октетов . Например, в хлориде бора атом бора окружен не восьмью, а только шестью электронами, фосфор в РР5— десятью электронами, а сера в 5Рб — двенадцатью электронами. [c.76]


    В схеме Льюиса, так же как и Косселя, электроны распределены слоями вокруг ядра на основе теории Бора, но в целях большей наглядности эти электроны условно размещены не по круговым орбитам, как у Косселя, а в кубической системе, по вершинам кубов — октетная схема строения. По Льюису тенденция атомов принимать электронную конфигурацию инертного элемента осуществляется не путем перехода электронов от одного атома к другому, а путем образования одной или нескольких общих электронных пар. [c.55]

    Синтезы циклопентадиенил-аниона и циклооктатетраена, осуществленные в начале двадцатого столетия, совпали с новым пробуждением интереса к природе вещества. Открытие электрона, радиоактивности и атомного ядра активизировали научную мысль успехи в области физики были вскоре использованы при обсуждении строения молекул. Теории Косселя, Лангмюра, Льюиса и других позволили формально описать химические связи с участием электронов. Особенно плодотворной оказалась октетная теория Льюиса, в которой магическому числу восемь приписывалась важнейшая роль в образовании электронной валентной оболочки вокруг атомов. В 1925 г. Армит и Робинсон [17], модифицировав гексацентричесКую теорию Бамбергера на основе электронных представлений, предположили, что ароматический секстет, подобно октету, представляет собой особо устойчивую комбинацию электронов. Как и в случае октета, причина, почему шесть, а не четыре или восемь электронов принимают устойчивую конфигурацию, оставалась непонятной. Примерно в то же время Ингольд [18] предположил, что помимо структур Кекуле в основное состояние бензола могут вносить вклад структуры ара-связанного бензола Дьюара, и таким образом была создана резонансная картина бензола. [c.286]

    В 1910—1920 гг. Лэнгмюр и другие исследователи разработали модели адсорбционных центров, основанные на кристаллографических данных об атомах на поверхностях. Ненасыщенной связи такого центра приписывали электростатический или ковалентный характер ( свободные связи ) в зависимости от природы твердого тела, что делало возможной интерпретацию ее в рамках октетной теории Льюиса —Косселя. Примерно в 1923 г, было высказано предположение, что кристаллические решетки могут быть дефектными, и постулировано наличие в кристаллах трещин Гриффита и внедренных атомов Френкеля, Деление твердых катализаторов на ионные, ковалентные и металлические все еще оставалось полезным, однако возникла необходимость различать свойства хороших и плохих поверхностей, В 1926— 1927 гг, такое различие (в виде различия между свойствами однородных и неоднородных поверхностей) было уже явно выражено в двух эвристических гипотезах, основанных на исследовании хемосорбции и катализа — мультиплетной теории Баландина [1] и теории активных центров Тейлора [2]. [c.39]

    По теории Косселя атомы неметаллов также стре1лятся к устойчивому октету электронов. У неметаллов на последнем энергетическом уровне 4—7 электронов, и им легче принять электрон, чтобы приобрести восьмиэлектронную (октетную оболочку) и превратиться в отрицательно заряженный ион. Например, атом хлора имеет электронную конфигурацию 2) 8) 7), оп легко принимает электрон и превращается в отрицательно заряженный ион  [c.6]

    С развитием представлений об электронном строении атома стало ясным, что особая химическая инертность гелия, неона, аргона и их аналогов обусловлена повышенной устойчивостью полностью укомплектованных 5- и /3-оболочек. С учетом этого и были разработаны представления о ионной (Коссель, 1916) и ковалентной (Льюис, 1916) связи. Особая устойчивость электронного октета и стремление других атомов тем или иным способом приобрести электронную конфигурацию благородного газа на долгие годы стали краеугольным камнем теорий химической связи и кристаллохимического строения (правило Юм-Розери 8—Л, критерий Музера и Пирсона и др.). Нулевая группа стала своеобразной осью периодической системы, отражающей так называемое полновалентное правило (стабильность октетной конфигурации), подобно тому как УА-группа является осью, отражающей четырехэлектронное правило. [c.397]

    В основе теории Косселя лежит стремление атомов отдавать или приобретать при ионизации столько электронов, чтобы образовалась внешняя электронная оболочка, идентичная оболочке атомов соседних благородных газов. Действительно, электронная оболочка последних отличается особенно большой устойчивостью, что видно, например, из их полной химической инертности. Она целиком заполнена 8 электронами у атомов всех благородных газов кроме гелия, где заполнение достигается двумя электронам (табл. 11). Такую заполненную стабильную октетную оболочку мы будем дальше называть замкнутой. Если элемент в периодической системе-.ближе к предыдущему благородному газу, чем к следующему (начало периода), то он отдает избыточные электроны, превращаясь в катион. Такие элементы называются электроположительными (металлическими). Типичными их представителями служат щелочные и щелочноземельные металлы и, в меньшей степени, гомологи алюминия. Если элемент ближе к следующему за ним благородному газу, то он называется электроотрицательным (металлоидным). Его атомы достраивают свои электронные обо--лочки до- замкнутых октетов, приобретая электроны и превращаясь при этом в анионы. Типичными представителями таких элементов служат галоиды, гомологи кислорода и, в меньшей степени, гомологи азота. Таким образом, молекулы с ионной связью образуются из сильно электроположительных и сильно электроотряцател.ь-ных атомов наиболее ясно выражена эта связь в галоидных соединениях щелочных металлов. [c.218]


    Во всех этих формулах каждый атом в молекуле (кроме водорода) окружен восемью электронами подобна электронному окружению свободных атомов благородных газов. Таким образом, в теории Льюиса сохраняется основная предпосылка теории Косселя стремление атомюв образовать октетную замкнутую оболочку атомов благородных газов Принципиальная разница между обеими теориями заключается в том, что по Косселю это достигается [c.221]


Смотреть страницы где упоминается термин Коссель, октетная теория: [c.163]    [c.139]    [c.217]    [c.6]    [c.12]   
Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.101 ]




ПОИСК





Смотрите так же термины и статьи:

Косселя



© 2025 chem21.info Реклама на сайте