Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ковалентная связь с участием электронов

    Органические соединения остальных переходных элементов. Переходные элементы остальных (кроме ПБ) побочных подгрупп периодической системы в проявляемых их атомами степенях окисления имеют незавершенные электронные -подоболочки предвнешнего уровня. Поэтому, наряду с образованием ординарной полярной ковалентной связи с углеродом за счет вклада внешних з- и р-орбиталей, они способны образовывать совершенно иные по строению и свойствам соединения за счет участия ( -орбиталей. В таких соединениях металл можно так же, как и соединения магния, бора, алюминия (см. выше), считать координационно ненасыщенным. Данная ненасыщенность металла теперь определяется наличием вакантных орбиталей не только на внешнем, но и на втором снаружи энергетических уровнях его атома. Природа вакантных орбиталей атома переходного элемента также отличается от орбиталей в- и р-элементов. Симметрия и пространственная протяженность -орбиталей переходного элемента позволяет им эффективно перекрываться с орбиталями большего числа атомов и удаленных на большее расстояние от металла, чем это возможно для з-или р-элемента. Поэтому часто органические соединения переходных металлов являются комплексными. С примерами таких комплексных элементоорганических соединений мы уже встречались ферроцен, дибензолхром, хелаты и др. (разд. 13.4). [c.599]


    По характеру химической связи элементов с углеродом и другими элементами в их составе элементоорганические соединения делят на две большие группы. В первую группу включают соединения в- и р-элементов непереходных элементов), а во вторую — органические производные й- и /-элементов (переходных элементов). Для соединений первой группы характерно образование ковалентных полярных <7-связей. Для органических производных второй группы типичны комплексные соединения с участием -электронов предвнешней электронной оболочки атомов элемента. Существуют и другие способы классификации, однако свойства элементоорганических соедршений столь разнообразны, что проще рассмотреть наиболее типичные из них в порядке изменения строения электронной оболочки атома элемента, как это делалось при рассмотрении свойств неорганических соединений. [c.588]

    Таким образом, графит является молекулярным кристаллом в одном направлении и ковалентным — в другом. К кристаллам со смешанными связями относятся многочисленные силикатные материалы, в которых наряду с ковалентными действуют ионные и межмолекуляр-ные силы. Немалое значение имеют ковалентные связи в металлических кристаллах, образуемых -элементами. Высокие твердость, плотность и температуры плавления, а также заниженную (по числу валентных электронов) электропроводность этих металлов объясняют участием (I-электронов в образовании ковалентных связей между частицами в узлах кристаллических решеток. [c.81]

    Следует заметить, что для образования связей и проявления степени окисления +3 необходимо участие спаренных электронов, занимающих -орбиталь в атомах этих элементов. Пара электронов 5 устойчива и принимает участие в образовании химических связей лишь у элементов, образующих прочные связи например, у алюминия валентность +3 является преобладающей. Устойчивость одновалентных состояний растет в подгруппе по мере снижения прочности связей, и у таллия известны многочисленные соединения, в которых он одновалентен. Напротив, бор в соединениях всегда трехвалентен образование ковалентных связей в общем случае может доставить энергию, необходимую для того, чтобы перевести электроны атома бора в реакционноспособное возбужденное состояние, отвечающее 5р -гибридизации. Ионизационный потенциал (первый) бора настолько высок (8,29 эВ), что образование одной связи с одновалентным катионом бора не может компенсировать затраты энергии на отрыв электрона. Направление осей гибридных облаков этого типа характеризуется углами 120°, причем все три оси лежат в одной плоскости. Поэтому молекула соединения бора типа ВС1з имеет плоскую структуру. Бор в гидридах формально ведет себя как четырехвалентный элемент. Боран ВНз в свободном состоянии неизвестен и обнаружен только как неустойчивый промежуточный продукт. Но диборан ВгНв исследован детально. Этот гидрид был использован для получения и ряда других боранов. Диборан получают в чистом виде из борогидрида натрия и три-фторида бора  [c.157]


    Особым видом ковалентной связи является так называемая координационная, или донорно-акцепторная связь. Координационной называется связь между атомами, один из которых — донор — имеет заполненную внешнюю атомную орбиту (как говорят, имеет неподеленную пару электронов, т. е. пару электронов, не принимающих участия в образовании других химических связей), а второй — акцептор — имеет пустую, не содержащую ни одного электрона, внешнюю атомную орбиту, В молекуле этим двум атом- [c.12]

    Эти доводы можно представить себе в более ясной форме при более точном рассмотрении природы частично образованной связи С—2 в переходном состоянии. Такие частично образованные связи между углеродом и электрофильным атомом или группой 2 должны были бы иметь более сильно выраженный ионный характер с меняющейся долей участия в ковалентной связи, в зависимости от природы реагента. Сильно электрофильный реагент Ъ будет требовать низкой энергии активации, и С—Ъ связь будет по характеру сильно ионной. Такая связь будет требовать лишь незначительного участия электронов заместителя в кольце. Следовательно, заместители будут проявлять только слабое направляющее влияние на входящие группы. [c.426]

    Для вычисления формальных зарядов на атомах в молекуле каждому атому приписывают по одному электрону от каждой ковалентной связи, образуемой парой электронов с участием данного атома, плюс все его неподеленные электронные пары. Тогда формальный заряд на атоме совпадает с зарядом, который он имел бы, если бы стал изолированным ионом с таким же числом валентных электронов  [c.469]

    Если считать, что ковалентные связи в молекуле ЫНз образованы за счет участия трех р-электронов атома азота, то валентный угол между ними должен быть равным 90°. Однако он составляет 107°3, рис. 11.13. Это означает, что связи N—Н в молекуле ЫНз образованы не за счет чистых р-орбиталей атомов водорода и азота, а за счет орбиталей, претерпевших хр -гибридизацию и подвергшихся действию сил отталкивания неподеленной пары электронов. [c.46]

    Хемосорбция многих ненасыщенных молекул происходит без диссоциации с участием в ковалентных связях л-электронов кратных связей или неподеленных электронных пар таких атомов, как О, 5 или N. К подобным молекулам относятся этилен и его гомологи, ацетилен и его гомологи, окись углерода и вещества с карбонильной связью, а также органические вещества, содержащие кислород, серу или азот. [c.98]

    В ионе [Ni( N)4] " связь должна быть ковалентной с участием -электрона (йзр ). Конфигурация должна быть плоскостной. [c.315]

    У всех остальных перечисленных в табл. 20 соединений связь между центральным ионом и лигандами также должна быть в основном ковалентной с участием -электронов ( р-связи). [c.315]

    Электроны Не переходят на эту орбиталь, более близкую по энергии к АО (Не), чем к АО (Н ). Атом Не —донор, ион Н — акцептор. По своей природе связь здесь ничем не отличается от ковалентной связи молекулярная орбиталь охватывает ядра Не и Н. Но в отличие от молекулы 2, где ковалентную связь осуществляют два электрона, но одному от каждого атома, в ионе НеН два электрона связи предоставлены одним атомом. Таким образом, правильнее говорить о донорно-акцепторном механизме образования ковалентной связи, а не о донорно-акцеп-торной связи, как принято обычно. Связь эта всегда имеет известную полярность, так как на доноре возникает положительный, а на акцепторе — отрицательный заряд из-за сдвига электронов от донора к акцептору. Донорно-акцепторный механизм широко распространен в реакциях комплексообразования с участием двухатомных и многоатомных молекул. Из рассмотренных молекул донором может быть, например, молекула СО. У многоатомных молекул донорами могут быть молекулы ННз,Н20 и др., у которых имеются несвязывающие МО, заполненные парой электронов. [c.140]

    Из металлов наибольшую температуру плавления имеют простые вещества -элементов. Полагают, что в этот проявляется ковалентная связь (за счет -электронов), которая присутствует в их кристаллах наряду с металлической связью (за счет внешних з-электронов). Участие в образовании ковалентной связи в наибольшей степени проявляется у 5 -электронов, поэтому в подгруппах -элементов температура плавления с ростом порядкового номера повышается (рис. 145). [c.259]

    В результате такого взаимодействия с участием неподеленных пар электронов нуклеофила образуется новая ковалентная связь между нуклеофилом и электронодефицитным атомом углерода, а уходящая группа X вытесняется из соединения вместе с электронной парой, с помощью которой она была ковалентно связана с атомом углерода в субстрате, [c.96]

    Несмотря на бесспорность того, что -электроны оказывают влияние на условия образования и прочность ковалентных связей, возинкающих при адсорбции иа металлах, нельзя ожидать простой зависимости между теплотой хемосорбции и каким-либо свойством, связанным с -электронами, так как хемосорбция зависит также от других свойств металлов. Последний член в выражении (32), учитывающий электроотрицательность металла, до некоторой степени характеризует легкость потери металлом электронов. Следует указать, что порядок расположения металлов по уменьшению теплот хемосорбции (см. раздел V, 86) почти совпадает с порядком их расположения по возрастанию работ выхода. Для образования диполей с участием адсорбированных атомов и металла необходимо совершить работу против работы выхода, свойственной металлу. Поэтому можно предположить, что чем меньше работа выхода, тем меньшую работу необходимо совершить для образования этих диполей и тем больше будет дипольный момент. [c.60]


    Полярные ковалентные связи в молекулах IFs и ВгРз очень прочные, а свободные электронные пары расположены достаточно симметрично. С термодинамической точки зрения диспропорционирование, несмотря на отрицательные значения АС°обр для IF и ВгР, объясняется тем, что значения AG°o6p для IP5 и ВгРз еще более отрицательны. Аналогичные соотношения выполняются и для энергий диссоциации (рис. В.27). Молекула ВгР устойчивее, чем молекула IF, поскольку в первой возможно участие ря— ге-связывания. Сравнение устойчивости различных межгалогенных соединений типа АВ, АВз, ABs и IF7 между собой, а также с неполярными молекулярными веществами типа А—А и В—В можно провести, используя рис. В.27. [c.501]

    Элементорганические соединения, имеющие ковалентную связь С—Э, являются производными непереходных элементов. В их образовании принимают участие электроны внешней оболочки атома, т. е. 5- и р-электроны. [c.173]

    За исключением некоторых оксидов, которые будут рассмотрены ниже, все соединения галогенов соответствуют нечетным степеням окисления. Такая закономерность обусловлена возможностью последовательного возбуждения спаренных электронов в атомах С1, Вг, I и At на d-подуровень, что приводит к увеличению числа электронов, принимающих участие в образовании ковалентных связей, до 3, 5 или 7- [c.477]

    Окислительно-восстановительные реакции с участием органических соединений. Разрыв ковалентной связи — основная особенность органических реакций он может осуществляться го-молитически и гетеролитически. В гомолитических реакциях электронные пары разрываются симметрично, т. е. для них харак- [c.166]

    Учитывая распределение электронов данного центрального атома и адденда и результаты измерения магнитной восприимчивости, можно решить, какие из электронов и на каких орбитах принимают участие в образовании ковалентных связей. На основании этого можно подтвердить или отвергнуть приписываемую комплексу структуру. Для никеля (II), например, характерно координационное число четыре, которое может осуществляться в тетраэдрической или плоской ковалентной структурах. [c.342]

    Водородная связь образуется, с одной стороны, атомом водорода, связанным с каким-либо значительно более электроотрицательным элементом второго или (менее вероятно) третьего периода системы элементов, наиболее часто с атомами М, О и Р и, с другой стороны, атомом второго периода системы элементов, имеющим неподеленную пару электронов. Эта связь значительно слабее ковалентной, в которой принимает участие тот же атом водорода сближение атома водорода с донором неподеленной пары электронов происходит в меньшей степени, чем при образовании ковалентной связи. [c.117]

    Если считать, что ковалентные связи в молекуле МНз образованы за счет участия трех р-электронов атома азота, то валентный [c.52]

    СЫ- или СО),, т. е. имеет место делокализация электронов, можно показать с помощью спинрезонансной спектроскопии. Необходимо построить молекулярные орбитали комплексных соединений подобно тому, как это было показано при рассмотрении молекулярных орбиталей СН4 (разд. 6.3.4). Для этого берутся определенные линейные комбинации молекулярных орбиталей лигандов, которые имеют такую же симметрию, как и атомные -орбитали центрального иона. Линейные комбинации для октаэдрических комплексов приведены в табл. А.28, а в более наглядном виде—на рис. А.58. (Индексы симметрии а1е, е , (ы и т. д. взяты из системы обозначений, принятых в теории групп, и здесь не обсуждаются.) Молекулярные орбитали комплексных соединений образуются линейной комбинацией таких атомных орбиталей металла и орбиталей лиганда, которые имеют одинаковую симметрию, так как в этом случае наблюдается максимальное перекрывание. Результаты энергетических расчетов молекулярных орбиталей представлены на рис. А.59. Разрыхляющие орбитали отмечены звездочкой. Заполнение электронами происходит, как обычно, попарно. Если в образовании связи принимают участие-12 электронов от шести октаэдрических лигандов и п -электронов металла, то первые заполняют связывающие и- и -орбитали, а -электроны — несвязывающие t2e- и разрыхляющие вг -орбитали. Последние две молекулярные орбитали играют ту же роль, как и в теории поля лигандов. Их расщепление также обозначают 10/) , хотя на энергию расщепления влияет перекрывание при образовании ковалентных связей. [c.136]

    Наблюдаемое спектральное поведение адсорбированного на цеолите типа NaA ацетилена исключает диссоциативный механизм хемосорбции, предусматривающий превращение ацетилена в результате автогидрирования в этилен иа чистом никеле или на системе Ni—кизельгур [17]. По-видимому, хемосорбция ацетилена на цеолите тина NaA происходит без диссоциации с участием в ковалентных связях л-электронов кратных связей. [c.68]

    Поскольку пребывание двух электронов в поле действия двух ядер энергетически выгоднее, чем нахождение каждого электрона в моле своего ядра, в образовании ковалентных связей принимают участие все одноэлектронные облака. Например, атомы кислорода и азота могут соединяться с двумя и тремя (соответственно) одновалент-1ЫМИ атомами водорода  [c.66]

    Таким образом, еслн устойчивость иона 5Ю в основном определяют а-связи, то устойчивость иона СЮ4 в существенной степени зависит и от л-связей. Так, в ионном КСЮ4 и ковалентном НСЮ число а-связей в хлорокнслородном тетраэдре одинаково. Но в НСЮ вследствие наличия связи О — Н доля участия электронов в л-связы-вании меньше  [c.433]

    Насыщаемость ковалентной связи. Насыщаемость ковалентной связи проявляется в том, что одна атомная орблталь атома может принимать участие в образовании только одной ковалентной химической связи. Это свойство определяет стехиометрию молекулярных химических соединений. Давно обнаруженное химиками, оно служило критерием правильности теории химической связи. Не случайно Дальтон, критикуя Авогадро, утверждал, если к атому водорода может присоединиться второй атом, то что мешает это сделать третьему, четвертому и т. д. В соответствии-с теорией валентных связей причина невозможности присоединения третьего атома водорода заключается в том, что исчерпаны возможности образования электронами с антипараллельными спинами прочных связей. [c.85]

    С другой стороны, сравнительно слабые электрофильные реагенты потребуют более высокой энергии активации. Связь С—Ъ по характеру более ковале>1тна. Для образования таких сильно ковалентных связей потребуется значительное участие электронов заместителей в кольце. В таких случаях заместитель будет оказывать значительное влияние сопряжения, проявляющееся в очень сильно выраженной избирательности по отношению к входящим группам. [c.426]

    Реагент, не имеющий электронной пары для вновь образующейся ковалентной связи, называется электрофильщсм (электроноакцепторным). Реакции, идущие при участии таких реагентов, называются электрофильными (электрофильные реакции замещения, отщепления или присоединения). [c.54]

    Ковалентная связь N1 — 0 в молекуле карбонила образуется по донорпо-акцепторному механизму, причем электронная плотность смещается от атома углерода к атому никеля. Увеличение отрицательного заряда на атоме металла компенсируется участием его с -электронов в связи, поэтому степень окисления никеля в соединении N1 С0)< равна нулю. При нагревании карбонилы металлов разлагаются на металл и оксид углерода (II), что используется для получения металлов особой чистоты. [c.135]

    Если же атакующий реагент не располагает электронной парой для вновь образующейся ковалентной связи, то он является элек-трофильным или электроноакцепторным. В качестве таких реагентов чаще всего выступают Н+, катионы металлов, катионы галогенов и некоторые соли. Реакции, идущие с участием таких реагентов, называются реакциями электрофильного замещения (соответственно также отщепления или присоединения). При этом реагирующая молекула проявляет электронодонорные свойства, так как новая связь образуется за счет ее пары электронов. Такая реакция приводит к образованию конечного продукта и катиона — промежуточной частицы  [c.25]

    Реагент, который предоставляет электронную пару для образо вания новой ковалентной связи, называется нуклеофильным (элек-тронодонорным). Реакции, идущие при участии таких реагентов, [c.53]

    ВАЛЕНТНОСТЬ (лат. Уа1епз — I моющий силу) — способность атомов химических элементов образовывать химические связи с атомами других элементов. С точки зрения электронного строения атомов В. — это способность атомов или атомных группировок отдавать или присоединять в каждом отдельном случае определенное количество электронов с образованием эквивалентного количества химических связей. В соединениях с ионной связью В. определяется числом присоединенных (отрицательная В.) или отданных (положительная В.) электронов. В соединениях с ковалентной связью В. атомов определяется числом электронов, принимающих участие в образовании общих электронных пар. В. элемента зависит от строения внешних электронных оболочек атомов. [c.51]

    Учет л-связей. До сих пор мы пре небрегали я-связью, хотя данные, приведенные в табл. 7-10, наводят на мысль о необходимости ее учета с позиций теории молекулярных орбиталей. зй Орбитали металла имеют ту же симметрию, что и я-молекулярные орбитали лиганда. Следовательно, /гя ОРбитали, которые ранее называли несвязы Бающими, в действительности мо гут принимать участие в обра зовании я-связи. "Метод построения молекулярных орбиталей с участием я-орбиталей лигандов во многом сходен с методом построения молекулярных а-орбиталей. з -Орбитали расщепляются на связывающие и разрыхляющие,как показано на рис. 7-6. Снижение энергии для ая Связывающих орбиталей увеличивает разность в энергии между I2 - и незатронутой разрыхляющей ор биталью. Это увеличивает величину ООд А), и, следовательно, мы можем сказать, что лиганд, способный образовать я-связи, более сильный по сравнению с тем, который не может их образо аать. Согласно теории молекулярных орбиталей, увеличение раз ности в энергиях между и е -орбиталями, обусловленное а-связью, ответственно за спаривание электронов и образование низкоспиновых комплексов. В теории кристаллического поля это приписывается увеличению электростатического поля лиганда, а согласно теории молекулярных орбиталей, расщепление обусловлено увеличением ковалентности связи, а не увеличением электро татического поля. [c.270]

    Теория валентных связей предполагает участие а образовании ковалентных связей не только чистых" атомньсх орбиталей, но и "смешанных , так называемых гибридных атомных орбиталей. При гибридизации первоначальная форма и энергия орбиталей (электронных облаков) взаимно изменяются и [c.22]

    Поскольку благородные газы чрезвычайно инертны, следует ожидать, что, если они и способны вступать в реакции, то лишь в очень жестких условиях. Далее, следует ожидать, что способность к химическим превращениям в первую очередь должны проявлять наиболее тяжелые благородные газы, поскольку они обладают более низкими энергиями ионизации, как это видно из рис. 6.6, ч. 1. Более низкая энергия ионизации предполагает возможность потери атомом электрона при образовании ионной связи. Кроме того, поскольку элементы группы 8А уже содержат в своей валентной оболочке восемь электронов (за исключением гелия, в атоме которого всего два электрона), образование ими ковалентных связей возможно лишь с участием орбиталей из надва-лентной оболочки. Но, как известно (из разд. 7.7, ч. 1), этой способностью обладают главным образом атомы более тяжельос элементов. [c.287]

    Наряду с а-связью может образоваться и я-связь, если на орбитали атома металла, которая может перекрываться с вакантной орбиталью донорного атома, находятся соответствующие с(-элек-троны. Эта связь изменяет распределение заряда как у атома металла, так и у лиганда, усиливая а-связь. Чем больше электронные облака перекрывают друг друга, тем более прочной является образующаяся ковалентная связь. Было показано, что для удовлетворения этого критерия необходимо, чтобы исходные атомные орбитали были гибридизованы, образуя новую систему эквивалентных орбиталей, принимающих участие в связи и имеющих определенное направление в пространстве. [c.250]

    Из сказанного следует, что при взаимодействии между собой атомы пятивалентных элементов отдают на образование химической связи только по три электрона. При взаимодействии атомов шестиваленгных элементов в образовании ковалентной связи принимают участие только по два электрона от каждого атома, а у семивалентных элементов это число сокращается до одного. [c.68]


Смотреть страницы где упоминается термин Ковалентная связь с участием электронов: [c.469]    [c.48]    [c.66]    [c.47]    [c.59]    [c.25]    [c.59]    [c.493]    [c.110]    [c.68]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.70 ]




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Связи ковалентные Связи

Связь ковалентная

Электрон связи



© 2025 chem21.info Реклама на сайте