Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки генетические различия между видами

    Все эти затруднения снижают точность анализа, но не приводят к значительным ошибкам (за исключением последней проблемы, которая в больших масштабах может оказаться серьезной). В первом приближении каждая полоса — это продукт ка-кого-либо гена, и различная подвижность означает наличие элементарного генетического различия. К сожалению, здесь, как и при любом другом электрофоретическом анализе, отсутствие различий ни о чем не говорит, так как многие изменения генов не отражаются на суммарном заряде белков. Это значит, что все оценки генетических различий между видами, основанные на электрофоретических исследованиях белков, занижены, вероятно, раза в три. [c.176]


    Пуассоновское распределение часто встречается в генетике. В гл. 20 мы рассмотрели примеры использования распределения Пуассона при определении частоты мутаций и числа генов. Другим примером применения пуассоновского распределения к задачам генетики может служить формула для определения генетического расстояния по данным электрофореза (дополнение 26.1). Ясно, что белки с различными электрофоретическими свойствами различны, но заранее неизвестно, состоят ли эти различия в одной или нескольких аминокислотах. Если величина различий между белками, кодируемыми одним локусом, подчиняется распределению Пуассона (а это предположение представляется вполне разумным, поскольку в каждом белке много аминокислот, а среднее число аминокислотных различий между близкородственными видами невелико), то частота идентичных белков, между которыми какие бы то ни было аминокислотные различия отсутствуют, задает значение нулевого члена пуассоновского распределения. Таким образом, если частота тождественных белков равна I, а средняя частота различий-/), то / = = е . Логарифмируя, получаем 1п/= — ) или = — 1п/, т.е. формулу для генетического расстояния, приведенную в дополнении 26.1. [c.270]

    Основной альтернативой модели с триггерным белком является так называемая модель вероятностного перехода . Она была предложена для объяснения наблюдений, сделанных с помощью цейтраферной киносъемки клеточных клонов, растущих в однотипных условиях в культуре. Хотя такие клетки генетически идентичны, они сильно отличаются друг от друга по продолжительности клеточного цикла. Типичное распределение по этому параметру (рис. 11-10) имело такой вид, как будто время клеточного цикла регулировалось каким-то вероятностным или стохастическим событием. Иными словами, для каждой клетки существует некоторая постоянная вероятность пройти точку рестрикции К, не зависящая от того, сколько времени прошло с момента последнего деления. Переход клетки в фазу 8 является в этой модели случайным процессом, аналогичным радиоактивному распаду нестабильных атомов. Стоит отметить, однако, что значительный разброс по длительности клеточного цикла (рис. 11-10) не противоречит и биологически более обоснованной модели с триггерным белком, так как даже генетически идентичные клетки, находящиеся в фазе Сх, могут сильно различаться между собой по скорости белкового синтеза. [c.147]


    В чем польза изучения полиморфизма ДНК для генетики человека Генетическая изменчивость молекул ДНК, и особенно нетранскрибируемых ее районов, по-видимому, явление намного более обычное, чем предполагалось на основе данных по белкам (разд. 6.1.2). Анализ полиморфизма ДНК проливает свет на историю популяции. Он важен также для понимания генетических механизмов эволюции, например для решения постоянно обсуждаемого вопроса о том, какая доля генетических различий между видами и между популяционными группами в пределах вида определяется естественным отбором, а какая-случай- [c.139]

    Электрофорез оказывается бесполезным при сравнении организмов, находящихся в очень отдаленном родстве. Они электрофоретически различаются по всем или по большинству локусов. Поскольку число аминокислотных замен нельзя установить с помощью электрофореза (устанавливаются лишь различия в электрофоретической подвижности белков), этот метод непригоден для того, чтобы оценить степень дифференциации между видами в случае, когда они различаются по всем или почти по всем локусам. С другой стороны, метод электрофореза имеет то преимущество, что при его использовании оценка расстояния производится по данным о многих локусах поэтому различия в скоростях эволюции в разных эволюционных линйях по одному локусу могут быть компенсированы различиями по другим локусам. В целом электрофорез-это удобный метод, позволяющий оценивать генетические изменения у близкородственных организмов, у которых анализ аминокислотных последовательностей какого-то одного белка может не выявить никаких различий или различия оказываются такими незначительными, что это приводит к ошибочным результатам. [c.231]

    ЛИБО выделяется всеми приматологами в самостоятельное семейство . Однако электрофоретические исследования показали, что человек генетически сходен с человекообразными обезьянами в той же мере, в какой сходны между собой близкородственные виды в других группах организмов (табл. 26.10 и 26.17). Среднее генетическое расстояние между человеком и крупными человекообразными обезьянами составляет всего лишь 0,354, или около 35 электрофоретически выявляемых замен на 100 локусов. Мэри-Клер Кинг и Аллан Уилсон рассчитали, что человек и шимпанзе различаются всего лишь по 1% аминокислот в белках. [c.239]

    Аминокислотные последовательности белков [51, 81]. Одним из основных достижений биохимии явилось определение аминокислотных последовательностей белков. Гомологичность аминокислотных последовательностей родственных белков стала очевидной вскоре после того, как в конце 1950-х и начале 1960-х гг. были разработаны методы секвенирования. С помощью этих методов была выявлена гомологичность разных, но функционально родственных белков одного и того же вида. По некоторым позициям эти последовательности, как правило, демонстрировали идентичность, а по другим различались. Из результатов изучения ряда вариантов гемоглобина человека в то время бьшо уже известно, что точковые мутации обычно приводят к замещению одной отдельной аминокислоты в полипептидной цепи. В ходе расшифровки генетического кода было показано, что такие замены вызываются замещением одного-единственного основания, происходапцим при транскрибировании цепи ДНК. Это открытие стимулировало выяснение эволюционных взаимосвязей между видами путем сравнения числа различий в аминокислотных последовательностях их гомологичных белков. В таких работах строились филогенетические деревья, которые могли сопоставляться с соответствующими схемами, полученными на основе классических палеонтологических и морфологических данных. Методы построения этих деревьев описаны многими авторами [51 1919 1921 1954]. [c.17]

    В 1960-е годы была обнаружена громадная генетическая изменчивость на уровне белков и соответственно ДНК. С помощью методов определения аминокислотных последовательностей удалось выявить различия между гомологичными белками разных видов, а также между родственными белками одних и тех же видов. Изучение генетического кода вскрыло новые источники изменчивости, нуждающиеся в дальнейшем исследовании. Огромное количество ДНК, обнаруженное в эукариотической клетке (разд. 2.3.1.1), породило вопрос о функции избыточной ДНК и возможной причине этого феномена. Связаны ли большое количество ДНК и ее значительная изменчивость с естественным отбором, как это предполагалось неодарвинов-ской теорией эволюции, или же на молекулярном уровне большее значение имеют случайные процессы Если бы решающим фактором был, как это предполагалось общепринятой синтетической теорией, отбор, то его действие испытывало бы огромное число сайтов ДНК. [c.21]

    Сфера и концептуальные трудности генетики поведения человека. Рассматривая генетические аспекты эволюции, легко убе-дитыгя в большом сходстве между человеком и высшими приматами по хромосомам, белкам и многим другим генетически детерминированным признакам. Сушественное отличие человека как вида состоит в его способности говорить и абстрактно мыслить. Ни одно другое живое сушество не может заглянуть в свое прошлое и в свое будущее Анализ различий между человеком и другими видами должен быть направлен на мозг-орган мьппления и речи. Благодаря именно этим особенностям нашего вида его биологическая эволюция дополнена культурной эволюцией и созданием цивилизации (см. табл. 7.1). Уникальность человеческого мозга, лежащая в основе этого развития, является частью нашего генетического наследия. Все эксперименты с наиболее близким человеку видом-шимпанзе-показали, что попытки воспитывать этих животных вместе с детьми или так же, как детей, не приводят к развитию речи. Хотя познавательные функции шимпанзе оказались более развитыми, чем считали ранее, даже эти животные никогда не достигают уровня концептуализации детей старшего возраста. [c.47]


    Метод гель-электрофорсза дает возможность обнаруживать полиморфизм по фер.ментам и по некоторым белкам, который не удавалось выявить обычными генетическими методами. Экстракт какой-либо ткани помещают в гель и подвергают действию электрического поля. Вследствие характерных особенностей подвижности в электрическом поле разных ферментов последние филн-чески разделяются затем гель окрашивают, и разные ферменты выявляются в виде обособленных пятен. Этим методом можно выявить аллельные различия для одной ферментной системы и генные различия между ферментами. [c.37]

    Изоферменты митохондрий и цитоплазмы обычно существенно различаются, и фумарат-гидратаза является исключением из общего правила. Довольно типична в этом плане малатдегидрогеназа каждый ее изофермент кодируется отдельным геном, и аминокислотный состав у разных изоферментов неодинаков [4733]. Отношение числа полярных аминокислот к неполярным у двух цитоплазматических форм различается мало, но митохондриальный фермент является более основным белком. Не совсем одинаково и их каталитическое действие, но, хотя митохондриальный изофермент катализирует главным образом прямую реакцию (которая соответствует циклу лимонной кислоты), а цитоплазматический изофермент — обратную (возможно, связанную с липогенезом), оба они присутствуют в относительно больших количествах и вряд ли играют регуляторную роль [4734]. Основная функция этих двух изоферментов, а также двух аспартатаминотрансфераз состоит в переносе по челночному механизму восстановительных эквивалентов между двумя указанными компартментами [3103]. Малатдегидрогеназа растений встречается в виде различных генетически независимых изоформ митохондриальной и цитоплазматической кроме того, в глиоксисомах обнаружена еще и третья форма [5216]. [c.114]


Смотреть страницы где упоминается термин Белки генетические различия между видами: [c.200]    [c.200]    [c.213]    [c.16]    [c.225]    [c.21]    [c.21]    [c.33]    [c.196]    [c.116]    [c.24]    [c.297]    [c.24]   
Генетические основы эволюции (1978) -- [ c.175 , c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Различие



© 2025 chem21.info Реклама на сайте