Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбиты круговые

    Электрон может вращаться вокруг ядра не по любы.м, а только по некоторым определенн аШ круговым орбитам. Эти орбиты получили название стационарны х. [c.66]

    Предложенная Бором модель атома водорода изображена на рис. 8-11 электрон массой движется по круговой орбите на расстоянии г от ядра. Если линейная скорость движения электрона равна и, то он обладает угловым моментом ln vr. (Чтобы уяснить себе, что представляет угловой момент, вообразите фигуриста, волчком вертящегося на льду. Вначале он вращается, широко расставив руки. Но потом, прижимая руки к бокам, фигурист начинает вращаться все быстрее и быстрее. Это происходит потому, что в отсутствие внешних сил угловой момент движения остается неизменным. Когда масса рук фигуриста приближается к оси его вращения, т. е. когда г уменьшается, скорость вращения должна повышаться, чтобы произведение тиг сохраняло постоянную величину.) В качестве первого основного предположения своей теории Бор постулировал, что для электрона в атоме водорода допустимы только такие орбиты, на которых угловой момент электрона представляет собой целочисленное кратное постоянной Планка, деленной на 2к  [c.345]


Рис. 8-12. Относительные размеры первых пяти боровских орбит атома водорода. Переходы с более высоких орбит на более низкие соответствуют изображенным на рис. 8-10. Каждая дуга представляет собой часть круговой орбиты, по которой электрон мо- Рис. 8-12. Относительные размеры первых пяти боровских орбит атома <a href="/info/1581">водорода</a>. Переходы с более высоких орбит на более низкие соответствуют изображенным на рис. 8-10. Каждая дуга представляет собой часть круговой орбиты, по которой электрон мо-
    Возникал вопрос-нельзя ли перенести представления о стоячих волнах в теорию строения атома, предложенную Бором Стоячие волны на круговой орбите могут существовать только при условии, что длина орбиты равна целому числу длин волн (рис. 8-15,в и г). Если это условие не выполняется, волны, приходящие в одну точку после очередных круговых прохождений всей орбиты, не совпадают по фазе и погашают друг друга. Величина амплитуды волн при повороте на 10° относительно произвольно выбранной точки окажется не такой, как при поворотах на 370 или 730°, хотя во всех трех случаях речь идет об одной и той же точке орбиты. Подобные волны не являются установившимися в каждой точке орбиты. Таким образом, граничным условием для допустимых стоячих волн на круговой орбите является их установившийся характер. [c.353]

    Переход от представлений о круговых и эллиптических орбитах электронов к плотностям вероятности оказывается очень трудным для большинства студентов, но им удается по крайней мере объяснить, о чем говорит принцип неопределенности и почему вообще приходится говорить [c.573]

    Для плоской круговой орбиты 1 = тиг (рис. 1) и тогда  [c.12]

    Самые различные процессы возникновения и поглощения электромагнитных колебаний обладают квантовой природой, т. е. при этих процессах энергия выделяется или поглощается только целыми порциями (квантами), пропорциональными частоте колебаний. Особенно плодотворно квантовые представления о природе излучения были применены к теории атома. Бор допустил, что из бесчисленного множества возможных орбит вращения электронов только некоторые отвечают стационарному состоянию атома. Приняв, что в атоме водорода электрон вращается по круговым орбитам, он постулировал, что устойчивыми из этих орбит могут быть только те, для которых момент количества движения электрона по [c.29]

    Различие подуровней электронов данной оболочки рассматривалось в теории Бора как результат того, что электроны могут вращаться не только по круговым орбитам, но и по орбитам эллиптическим с различным эксцентрицитетом. Побочное квантовое число должно характеризовать этот эксцентрицитет. [c.37]

    Успех теории Бора ограничился возможностью ее применения только к атому водорода. При попытках применения теории Бора к атому гелия она уже оказалась малоэффективной. Расчеты более сложных атомов на основе применения упрощенных представлений Бора выполнить оказалось вообще невозможно. Несмотря на внесенные Арнольдом Зоммерфельдом (1863— 1951) в теорию Бора усовершенствования, в связи с которыми была учтена возможность движения электронов в атоме не только по круговым, но и по эллиптическим орбитам, эта теория должна была уступить место новым воззрениям. [c.26]


    Спин-орбитальная связь. Спин-орбитальная связь появляется в результате взаимодействия снинового магнитного момента электрона с магнитным полем, возникающим в результате орбитального движения электрона. Рассмотрим круговое движение электрона по орбитали с радиусом г вокруг ядра с зарядом 2е. В системе координат, связанной с электроном, вращается ядро со скоростью, равной скорости вращения электрона, но только в противополож- [c.228]

    Формула (IX.11) правильно отражает некоторые особенности спин-орбитального взаимодействия. Энергия этого взаимодействия растет с увеличением заряда ядра, зависит от величины орбитального момента, а также от формы орбитали (точнее функции распределения электронной плотности), так как для всех орбиталей, кроме круговой, величина 1/г должна быть усреднена по орбитали. Константа спин-орбитальной связи X отражает особенности конкретной атомной системы. Ее величина может быть определена нз оптических спектров. [c.229]

    Т - период обращения планеты, г - радиус круговой орбиты планеты. [c.11]

    Для планет солнечной системы, по круговым орбитам с постоянным модулем линейной скорости, но с изменяющимся направлением этой скорости, начальная скорость планеты равна  [c.52]

    Во многих учебниках химии понятия и термины вводятся на основе представлений теории строения атома Бора такое положение затрудняет изучение основ квантовой химии. Поэтому в дальнейшем не применяются такие, например, термины, как круговые (эллиптические) орбиты электронов. В то же время представления об электронном облаке и электронных оболочках находят применение при квантовомеханическом описании строения атомов. [c.39]

    Наконец, несмотря на усовершенствования, внесенные в теорию Вора другими учеными (была принята во внимание возможность движения электрона в атоме не только по круговым, но и по эллиптическим орбитам, по-разному расположенным в пространстве), эта теория не смогла объяснить некоторых важных спектральных характеристик многоэлектронных атомов и даже атома водорода. Например, оставалась неясной причина различной интенсивности линий в атомном спектре водорода не объяснялась тонкая структура спектров атомов, заключающаяся в том, что их отдельные линии расщепляются на несколько других. Сами количественные расчеты многоэлектронных атомов оказались чрезвычайно сложными и практически неосуществимыми. Теория ошибочно описывала магнитные свойства атома водорода, принципиально не могла объяснить образование химической связи в молекулах. [c.45]

    Таким образом, квантовая механика уточняет представления квантовой модели атома водорода, предложенной Н. Бором, в которой постулировалось, что электрон вращается вокруг ядра по круговым орбитам определенных размеров. По квантовой теории электрон не должен находиться на орбите определенного радиуса, а может быть удален от ядра на различные расстояния, хотя и с неодинаковой вероятностью. Возникло представление об электронном облаке. В состоянии Ь совокупность наиболее вероятных местонахождений электрона представляет собой поверхность сферы с радиусом г , который совпадает с радиусом первой орбиты в модели Бора Оо. Электронное облако имеет наибольшую [c.20]

    Магнитный момент кругового тока определяется площадью орбиты S и силой тока i  [c.531]

    Немецкий физик А. Зоммерфельд ввел существенное дополнение в представления о форме орбит движения электронов круговые орбиты Бора были заменены более общим случаем эллиптических орбит. Это потребовало введения второго квантового числа, связанного с вытянутостью эллипса. В современной теории это квантовое число I называют орбитальным, азимутальным или побочным в отличие от главного квантового числа. [c.161]

    В 1913 г, датский физик Бор предположил, что электрон в атоме может двигаться без излучения энергии по стационарным орбитам. Согласно Бору, момент импульса электрона, обусловленный его движением по круговой орбите, равен [c.16]

    В дальнейшем (1916—1925 гг.) Зоммерфельд (Германия) и другие ученые разработали теорию строения многоэлектронных атомов, которая явилась развитием теории Бора. Было предположено, что стационарные орбиты в атомах могут быть не только круговыми, но и эллиптическими и могут различным образом располагаться в пространстве при этом размеры орбит и их расположение в пространстве задавались правилами квантования, представляющими обобщение уравнения (1.13). При помощи этой теории удалось объяснить многие закономерности, характерные для спектров. Однако теория Бора — Зоммерфельда не удовлетворяет современному состоянию науки. Несмотря на то что она объясняет многие особенности спектров, она имеет ряд неустранимых недостатков, которые обусловливают необходимость ее замены более совершенными представлениями. Главные недостатки теории Бора — Зоммерфельда таковы  [c.19]

    Так как электрон локализован на некоторой устойчивой орбите вокруг ядра, возникает вопрос о размере и конфигурации этой орбиты. В конечном виде Бор представлял такие орбиты как круговые с размером, удовлетворяющ,им квантовому условию о кратности момента количества движения электрона р величине /г/2я. Таким образом он предложил уравнение [c.30]

    Бор предложил модель атома водорода, согласно которой электрон движется по круговой орбите вокруг находяшегося в центре атома протона. Он предположил, что допустимы лишь определенные орбиты, соответствующие следующим энергиям  [c.375]


    Какой из названных ниже аспектов теории Бора недопустим с точки зрения принципа неопределенности Гейзенберга а) дискретные энергетические уровни атома 6) простые круговые орбиты в) кванювые числа г) электронные орбитали д) электронные волны Почему выбранный вами аспект не согласуется с принципом неопределенности  [c.380]

    Постулаты Бора, Во-первых, Бор постулировал существование стационарных состояний электрона, в которых его притяжение к ядру точно уравновешивается центробежной силой. В этих состоя-ннях электроны могут неопределенно долго оставаться, не теряя энер1 ии. Для каждого из стационарных состояний Бор рассчитал радиус круговых орбит, скорость движения электрона и величину его энергии. Согласно классической механике движение электрона вокруг ядра определяется моментом импульса, т. е. произведением массы электрона т на скорость его движения и и на радиус круговой орбиты г. Согласно законам квантовой механики энергия движущегося электрона, а следовательно, и момент импульса тюг могут изменяться только определенными порциями, или квантами, причем минимальное значение момента импульса составляет Н 1к, где /г — постоянная Планка, а иные его значения могут быть больше минимального в п раз, где п=1, 2, 3, 4, т. е. любое целое число. На основании равенстпа силы притяжения электрона к ядру центробежной силе и минимальности значения [c.25]

    TiiKHM образом создается новое, двойственное корпускулярно-волновое представление об электроне, которое заставило пересмотреть принятую прежде модель атома, согласно которой электрон в атоме движется по определенным круговым или эллиптическим орбитам, располагающимся в определенной плоскости. Согласно новому представлению электрон может находиться в любом месте охватывающего ядро пространства, ио неодинакова вероятность его пребывания в том или ином месте. Таким образом, положение электрона в пространстве, занимаемом атомом, неопределенно, и движение его в атоме может быть описано посредством так называемой волновой функции г)], которая имеет различные значения в разных точках пространства, занимаемого атомом. Нахождение точки в пространсгве определяется тремя ее координатами х, у иг. Волновая функция электрона может быть определена из значения этих координат при условии, что в начале системы координат помещается ядро атома. Задача определения волновой функции электрона, сводящаяся к нахождению амплитуды волны, может быть решена только для простейших атомов или ионов. [c.27]

    За время Т электрон цожет распространять лишь фрагменты силовых линий и силовых трубок. Поэтому такие силовые трубки не могут своими двумя концами заканчиваться электроном и протоном. Лишь по истечении времени т = Ех , когда радиус орбиты атома водорода повернется на центральшш угол сектора а, все эти встречно распространяющиеся силовые трубки электрона и протона (рис. 1) образуют кривую, оба конца которой заканчиваются электроном и протоном. Согласно [7], электромагнитные волны могут сообщать ускорение электрону лишь в том случае, если они проходят через электрон. Такая возможность в секторе атома водорода реализуется лишь после поворота радиуса орбиты на центральный угол а. Видно, что именно в этот момент образуется центральная силовая трубка, соединяющая протон и электрон. Так как центральная силовая трубка складывается из фрагментов в одно и то же время, то взаимодействие между протоном и электроном и в атоме водорода, посредством центральной силовой трубки, осуществляется также "мгновенно". Следовательно, благодаря образованию центральной силовой трубки, силы инерции электрона, возникшие при ускорении свободного падения на протон при движении по круговой орбите, равны силе кулоновского притяжения электрона и протона, но направлены в противоположные стороны. Согласно [1], стоячая электромагнитная волна, полученная наложением параллельных отраженных волн на такую же падающую волну, не переносит никакой энергии электромагнитного поля, так как падающая и отраженная волны переносят одно и то же количество энергии, но в противоположных направлениях. Следовательно, и в случае движения электрона в атомах и молекулах, при условии параллельности силовы линий, исходящих от противоположных зарядов, в центральных силовых трубках создается электромагнитная "невесомость" на данных участках их поверхности. [c.27]

    Правильность своей теории О. Ю. Шмидт остроумно доказывает тем, что планеты имеют почти круговые орбиты. Планеты с такими орбитами могли образоваться только путём объединения большого числа тел, содержащихся в газово-пылевом облаке, двигавшихся до того по самостоятельным эллиптическим орбитам вокруг Солнца. О. Ю. Шмидт не рассматривал детально механизм объединения пьутевых частиц, но можно думать, что при этом существенную роль играют те же факторы, что при слипании частиц аэрозолей. Безусловно, на процесс об разования агрегатов должны влиять поверхностные силы, наличие у частиц электрического заряда и т. д. Картина, кЬнечно, сильно усложняется тем, что га-зово-пылевое облако находится под интенсивным действием такого мощного фактора, как солнечное излучение во всех его видах. [c.29]

    Постулаты Бора находились в резком противоречии с положениями классической физики. С точки зрения классической механики электрон может вращаться по любым орбитам, а классическая э.дектродинамика не допускает движения заряженной частицы по круговой орбите без излучения. Но эти постулаты нашли свое оправдание в замечательных результатах, полученных Бором при расчете спектра атома водорода. [c.44]

    Поляризуемость близка по величине к объему молекулы. Это следует, в частности, из следующей грубой модели. Мы будем описывать действие электрического поля на атом как сдвиг круговой орбиты (радиуса R) на расстоя- ef ние А. На рис. XXIV.3 пунктиром показана проекция орбиты в первоначальном положении и жирной линией после включения поля. [c.535]


Смотреть страницы где упоминается термин Орбиты круговые: [c.67]    [c.351]    [c.380]    [c.586]    [c.17]    [c.45]    [c.36]    [c.224]    [c.12]    [c.60]    [c.167]   
Учебник общей химии (1981) -- [ c.68 , c.71 ]

Основы общей химии Т 1 (1965) -- [ c.82 ]

Основы общей химии том №1 (1965) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Круговые орбиты 69. Энергия и момент количества движения электрона, движущегося по эллиптическим орбитам 70. Квантование атома водорода 71. Квантовые состояния и фазовые интегралы

Орбита

Электрон орбиты круговые

Энергия круговой орбиты



© 2025 chem21.info Реклама на сайте